These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 39060408)

  • 21. Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas.
    Linnenbank H; Grynko Y; Förstner J; Linden S
    Light Sci Appl; 2016 Jan; 5(1):e16013. PubMed ID: 30167115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photonic-plasmonic-coupled nanoantennas for polarization-controlled multispectral nanofocusing.
    Trevino J; Walsh GF; Pecora EF; Boriskina SV; Dal Negro L
    Opt Lett; 2013 Nov; 38(22):4861-3. PubMed ID: 24322151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Directivity-Enhanced Detection of a Single Nanoparticle Using a Plasmonic Slot Antenna.
    Wu B; Lou Y; Wu D; Min Q; Wan X; Zhang H; Yu Y; Ma J; Si G; Pang Y
    Nano Lett; 2022 Mar; 22(6):2374-2380. PubMed ID: 35285643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of Thermoelectric Nanoantenna for Massive High-Output-Voltage Arrays.
    Anam MK; Yudhistira Y; Choi S
    Nanomaterials (Basel); 2024 Jul; 14(13):. PubMed ID: 38998764
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface lattice resonance in three-dimensional plasmonic arrays fabricated via self-assembly of silica-coated gold nanoparticles.
    Hasegawa M; Watanabe K; Namigata H; Welling TAJ; Suga K; Nagao D
    J Colloid Interface Sci; 2023 Mar; 633():226-232. PubMed ID: 36446215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical nanoantenna with muitiple surface plasmon resonances for enhancements in near-field intensity and far-field radiation.
    Liu S; Ju P; Lv L; Tang P; Wang H; Zhong L; Lu X
    Opt Express; 2021 Oct; 29(22):35678-35690. PubMed ID: 34808997
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical modeling of plasmonic nanoantennas with realistic 3D roughness and distortion.
    Kildishev AV; Borneman JD; Chen KP; Drachev VP
    Sensors (Basel); 2011; 11(7):7178-87. PubMed ID: 22164010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metasurface-based Fourier lens fed by compact plasmonic optical antennas for wide-angle beam steering.
    Zhou G; Qu SW; Chen B; Zeng Y; Chan CH
    Opt Express; 2022 Jun; 30(12):21918-21930. PubMed ID: 36224902
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tunable Optical Nanoantennas Incorporating Bowtie Nanoantenna Arrays with Stimuli-Responsive Polymer.
    Wang Q; Liu L; Wang Y; Liu P; Jiang H; Xu Z; Ma Z; Oren S; Chow EK; Lu M; Dong L
    Sci Rep; 2015 Dec; 5():18567. PubMed ID: 26681478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiresonant Composite Optical Nanoantennas by Out-of-plane Plasmonic Engineering.
    Song J; Zhou W
    Nano Lett; 2018 Jul; 18(7):4409-4416. PubMed ID: 29923727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Directivity enhanced Raman spectroscopy using nanoantennas.
    Ahmed A; Gordon R
    Nano Lett; 2011 Apr; 11(4):1800-3. PubMed ID: 21428381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D optical Yagi-Uda nanoantenna array.
    Dregely D; Taubert R; Dorfmüller J; Vogelgesang R; Kern K; Giessen H
    Nat Commun; 2011; 2():267. PubMed ID: 21468019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimizing plasmonic nanoantennas via coordinated multiple coupling.
    Lin L; Zheng Y
    Sci Rep; 2015 Oct; 5():14788. PubMed ID: 26423015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tunable Optical Performances on a Periodic Array of Plasmonic Bowtie Nanoantennas with Hollow Cavities.
    Chou Chau YF; Chou Chao CT; Rao JY; Chiang HP; Lim CM; Lim RC; Voo NY
    Nanoscale Res Lett; 2016 Dec; 11(1):411. PubMed ID: 27644237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine learning-based technique for resonance and directivity prediction of UMTS LTE band quasi Yagi antenna.
    Haque MA; Saha D; Al-Bawri SS; Paul LC; Rahman MA; Alshanketi F; Alhazmi A; Rambe AH; Zakariya MA; Ba Hashwan SS
    Heliyon; 2023 Sep; 9(9):e19548. PubMed ID: 37809766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Giant localized electromagnetic field of highly doped silicon plasmonic nanoantennas.
    Alsayed AE; Ghanim AM; Yahia A; Swillam MA
    Sci Rep; 2023 Apr; 13(1):5793. PubMed ID: 37031268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches.
    Bruck R; Muskens OL
    Opt Express; 2013 Nov; 21(23):27662-71. PubMed ID: 24514283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Compact unidirectional waveguide grating emitter with enhanced wavelength sensitivity based on the hybrid plasmonic mode.
    Liu N; Qu SW
    Opt Express; 2024 Jun; 32(12):22031-22044. PubMed ID: 38859543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying high performance gold nanoshells for singlet oxygen generation enhancement.
    Farooq S; de Araujo RE
    Photodiagnosis Photodyn Ther; 2021 Sep; 35():102466. PubMed ID: 34343668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. All-Opto Plasmonic-Controlled Bulk and Surface Sensitivity Analysis of a Paired Nano-Structured Antenna with a Label-Free Detection Approach.
    Verma S; Ghosh S; Rahman BMA
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.