These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 39061103)

  • 1. Lactate-mediated mixotrophic co-cultivation of Clostridium drakei and recombinant Acetobacterium woodii for autotrophic production of volatile fatty acids.
    Mook A; Herzog J; Walther P; Dürre P; Bengelsdorf FR
    Microb Cell Fact; 2024 Jul; 23(1):213. PubMed ID: 39061103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate based caproate production with
    Herzog J; Mook A; Utesch T; Bengelsdorf FR; Zeng AP
    Front Bioeng Biotechnol; 2023; 11():1212044. PubMed ID: 37425355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autotrophic lactate production from H
    Mook A; Beck MH; Baker JP; Minton NP; Dürre P; Bengelsdorf FR
    Appl Microbiol Biotechnol; 2022 Feb; 106(4):1447-1458. PubMed ID: 35092454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel synthetic co-culture of
    Herzog J; Mook A; Guhl L; Bäumler M; Beck MH; Weuster-Botz D; Bengelsdorf FR; Zeng AP
    Eng Life Sci; 2023 Jan; 23(1):e2100169. PubMed ID: 36619880
    [No Abstract]   [Full Text] [Related]  

  • 5. A quantitative metabolic analysis reveals Acetobacterium woodii as a flexible and robust host for formate-based bioproduction.
    Neuendorf CS; Vignolle GA; Derntl C; Tomin T; Novak K; Mach RL; Birner-Grünberger R; Pflügl S
    Metab Eng; 2021 Nov; 68():68-85. PubMed ID: 34537366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii.
    Straub M; Demler M; Weuster-Botz D; Dürre P
    J Biotechnol; 2014 May; 178():67-72. PubMed ID: 24637370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation.
    Groher A; Weuster-Botz D
    J Biotechnol; 2016 Jun; 228():82-94. PubMed ID: 27107467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induced heterologous expression of the arginine deiminase pathway promotes growth advantages in the strict anaerobe Acetobacterium woodii.
    Beck MH; Flaiz M; Bengelsdorf FR; Dürre P
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):687-699. PubMed ID: 31807888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological acetate production from carbon dioxide by Acetobacterium woodii and Clostridium ljungdahlii: The effect of cell immobilization.
    Cheng HH; Syu JC; Tien SY; Whang LM
    Bioresour Technol; 2018 Aug; 262():229-234. PubMed ID: 29709841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of putative genes for the production of medium-chained acids and alcohols in autotrophic acetogenic bacteria.
    Wirth S; Dürre P
    Metab Eng; 2021 Jul; 66():296-307. PubMed ID: 33894339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis.
    Liew F; Henstra AM; Winzer K; Köpke M; Simpson SD; Minton NP
    mBio; 2016 May; 7(3):. PubMed ID: 27222467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO Metabolism in the Acetogen Acetobacterium woodii.
    Bertsch J; Müller V
    Appl Environ Microbiol; 2015 Sep; 81(17):5949-56. PubMed ID: 26092462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Horizons in Acetogenic Conversion of One-Carbon Substrates and Biological Hydrogen Storage.
    Müller V
    Trends Biotechnol; 2019 Dec; 37(12):1344-1354. PubMed ID: 31257058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of butyrate from methanol and carbon monoxide by recombinant Acetobacterium woodii.
    Chowdhury NP; Litty D; Müller V
    Int Microbiol; 2022 Aug; 25(3):551-560. PubMed ID: 35179672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alanine, a Novel Growth Substrate for the Acetogenic Bacterium Acetobacterium woodii.
    Dönig J; Müller V
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30242008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimisation of continuous gas fermentation by immobilisation of acetate-producing Acetobacterium woodii.
    Steger F; Rachbauer L; Windhagauer M; Montgomery LFR; Bochmann G
    Anaerobe; 2017 Aug; 46():96-103. PubMed ID: 28648471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and microbial communities from dark fermentation bioreactors.
    Detman A; Mielecki D; Chojnacka A; Salamon A; Błaszczyk MK; Sikora A
    Microb Cell Fact; 2019 Feb; 18(1):36. PubMed ID: 30760264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing hydrogen-dependent growth of and carbon dioxide fixation by Clostridium ljungdahlii through nitrate supplementation.
    Emerson DF; Woolston BM; Liu N; Donnelly M; Currie DH; Stephanopoulos G
    Biotechnol Bioeng; 2019 Feb; 116(2):294-306. PubMed ID: 30267586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redirecting electron flow in Acetobacterium woodii enables growth on CO and improves growth on formate.
    Moon J; Poehlein A; Daniel R; Müller V
    Nat Commun; 2024 Jun; 15(1):5424. PubMed ID: 38926344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel way to utilize hydrogen and carbon dioxide in acidogenic reactor through homoacetogenesis.
    Yan BH; Selvam A; Xu SY; Wong JW
    Bioresour Technol; 2014 May; 159():249-57. PubMed ID: 24657755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.