These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 39061724)

  • 21. Novel crescent drill design and mechanistic force modeling for thrust force reduction in bone drilling.
    Liu S; Wu D; Zhao J; Yang T; Sun J; Gong K
    Med Eng Phys; 2022 May; 103():103795. PubMed ID: 35500995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cadaveric Study of Bone Tissue Temperature During Pin Site Drilling Using Fluoroptic Thermography.
    Muffly MT; Winegar CD; Miller MC; Altman GT
    J Orthop Trauma; 2018 Aug; 32(8):e315-e319. PubMed ID: 29738397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature change in pig rib bone during implant site preparation by low-speed drilling.
    Kim SJ; Yoo J; Kim YS; Shin SW
    J Appl Oral Sci; 2010; 18(5):522-7. PubMed ID: 21085811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of thermal necrosis risk regions for different bone qualities as a function of drilling parameters.
    Chen YC; Tu YK; Tsai YJ; Tsai YS; Yen CY; Yang SC; Hsiao CK
    Comput Methods Programs Biomed; 2018 Aug; 162():253-261. PubMed ID: 29903492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An analytical and numerical approach to the determination of thermal necrosis in cortical bone drilling.
    Aydın K; Ökten K; Uğur L
    Int J Numer Method Biomed Eng; 2022 Oct; 38(10):e3640. PubMed ID: 35899364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal changes and drill wear in bovine bone during implant site preparation. A comparative in vitro study: twisted stainless steel and ceramic drills.
    Oliveira N; Alaejos-Algarra F; Mareque-Bueno J; Ferrés-Padró E; Hernández-Alfaro F
    Clin Oral Implants Res; 2012 Aug; 23(8):963-9. PubMed ID: 21806686
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the importance of precision in cortical bone drilling: Integrating experimental validation and computational modeling.
    Einafshar MM; Rajaeirad M; Babazadeh Ghazijahani A; Skipper Andersen M
    J Orthop; 2024 Oct; 56():70-76. PubMed ID: 38800589
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel standardized bone model for thermal evaluation of bone osteotomies with various irrigation methods.
    Strbac GD; Giannis K; Unger E; Mittlböck M; Watzek G; Zechner W
    Clin Oral Implants Res; 2014 May; 25(5):622-31. PubMed ID: 23347297
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new thermal model for bone drilling with applications to orthopaedic surgery.
    Lee J; Rabin Y; Ozdoganlar OB
    Med Eng Phys; 2011 Dec; 33(10):1234-44. PubMed ID: 21803638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro comparison of conventional surgical and rotary ultrasonic bone drilling techniques.
    Gupta V; Singh RP; Pandey PM; Gupta R
    Proc Inst Mech Eng H; 2020 Apr; 234(4):398-411. PubMed ID: 32026750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of bone density, drill diameter, drilling speed, and irrigation on temperature changes during implant osteotomies: an in vitro study.
    Salomó-Coll O; Auriol-Muerza B; Lozano-Carrascal N; Hernández-Alfaro F; Wang HL; Gargallo-Albiol J
    Clin Oral Investig; 2021 Mar; 25(3):1047-1053. PubMed ID: 32533265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model.
    Chen YC; Tu YK; Zhuang JY; Tsai YJ; Yen CY; Hsiao CK
    Med Biol Eng Comput; 2017 Nov; 55(11):1949-1957. PubMed ID: 28353132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of a self-centring drill bit for orthopaedic surgery: A systematic comparison of the drilling performance.
    Bai W; Pan P; Shu L; Yang Y; Zhang J; Xu J; Sugita N
    J Mech Behav Biomed Mater; 2021 Nov; 123():104727. PubMed ID: 34492615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feed rate control in robotic bone drilling process.
    Boiadjiev T; Boiadjiev G; Delchev K; Chavdarov I; Kastelov R
    Proc Inst Mech Eng H; 2021 Mar; 235(3):273-280. PubMed ID: 33231113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical and Experimental Analyses on the Temperature Distribution in the Dental Implant Preparation Area when Using a Surgical Guide.
    Liu YF; Wu JL; Zhang JX; Peng W; Liao WQ
    J Prosthodont; 2018 Jan; 27(1):42-51. PubMed ID: 27078175
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature Prediction Model for Bone Drilling Based on Density Distribution and In Vivo Experiments for Minimally Invasive Robotic Cochlear Implantation.
    Feldmann A; Anso J; Bell B; Williamson T; Gavaghan K; Gerber N; Rohrbach H; Weber S; Zysset P
    Ann Biomed Eng; 2016 May; 44(5):1576-86. PubMed ID: 26358479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of a drill diameter on the temperature rise in a bone during implant site preparation under clinical conditions.
    Bogovič V; Svete A; Bajsić I
    Proc Inst Mech Eng H; 2016 Oct; 230(10):907-17. PubMed ID: 27459501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In Vitro and Ex Vivo Evaluation of a Novel Guided Drill System for Bone-Anchored Hearing Implants.
    Johansson ML; Eriksson T; Omar O
    Int J Oral Maxillofac Implants; 2019; 34(6):e85-e98. PubMed ID: 31711073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature change during orthopedic drilling procedures: An experimental surgical internal fixation simulation study.
    Pazarcı Ö; Gündoğdu F
    J Orthop; 2023 Dec; 46():58-63. PubMed ID: 37942216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cortical bone drilling and thermal osteonecrosis.
    Augustin G; Zigman T; Davila S; Udilljak T; Staroveski T; Brezak D; Babic S
    Clin Biomech (Bristol, Avon); 2012 May; 27(4):313-25. PubMed ID: 22071428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.