These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 39061984)
1. Prediction of Histological Grade of Oral Squamous Cell Carcinoma Using Machine Learning Models Applied to Nikkuni Y; Nishiyama H; Hayashi T Biomedicines; 2024 Jun; 12(7):. PubMed ID: 39061984 [TBL] [Abstract][Full Text] [Related]
2. Machine learning model based on enhanced CT radiomics for the preoperative prediction of lymphovascular invasion in esophageal squamous cell carcinoma. Wang Y; Bai G; Huang M; Chen W Front Oncol; 2024; 14():1308317. PubMed ID: 38549935 [TBL] [Abstract][Full Text] [Related]
3. A machine learning approach using Qi WX; Li S; Xiao J; Li H; Chen J; Zhao S Front Immunol; 2024; 15():1351750. PubMed ID: 38352868 [TBL] [Abstract][Full Text] [Related]
4. Five machine learning-based radiomics models for preoperative prediction of histological grade in hepatocellular carcinoma. Wu C; Du X; Zhang Y; Zhu L; Chen J; Chen Y; Wei Y; Liu Y J Cancer Res Clin Oncol; 2023 Nov; 149(16):15103-15112. PubMed ID: 37624395 [TBL] [Abstract][Full Text] [Related]
5. Preliminary study on the ability of the machine learning models based on Wang J; Zhou Y; Zhou J; Liu H; Li X Eur J Radiol; 2024 Jul; 176():111531. PubMed ID: 38820949 [TBL] [Abstract][Full Text] [Related]
6. An [ Meng N; Feng P; Yu X; Wu Y; Fu F; Li Z; Luo Y; Tan H; Yuan J; Yang Y; Wang Z; Wang M Eur Radiol; 2024 Jan; 34(1):318-329. PubMed ID: 37530809 [TBL] [Abstract][Full Text] [Related]
7. Prediction of the Ki-67 expression level in head and neck squamous cell carcinoma with machine learning-based multiparametric MRI radiomics: a multicenter study. Chen W; Lin G; Chen Y; Cheng F; Li X; Ding J; Zhong Y; Kong C; Chen M; Xia S; Lu C; Ji J BMC Cancer; 2024 Apr; 24(1):418. PubMed ID: 38580939 [TBL] [Abstract][Full Text] [Related]
8. Predicting the Local Response of Esophageal Squamous Cell Carcinoma to Neoadjuvant Chemoradiotherapy by Radiomics with a Machine Learning Method Using Murakami Y; Kawahara D; Tani S; Kubo K; Katsuta T; Imano N; Takeuchi Y; Nishibuchi I; Saito A; Nagata Y Diagnostics (Basel); 2021 Jun; 11(6):. PubMed ID: 34200332 [TBL] [Abstract][Full Text] [Related]
9. A Machine Learning Approach Using [ Park YJ; Park YS; Kim ST; Hyun SH Mol Imaging Biol; 2023 Oct; 25(5):897-910. PubMed ID: 37395887 [TBL] [Abstract][Full Text] [Related]
10. Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study. Abbaspour S; Barahman M; Abdollahi H; Arabalibeik H; Hajainfar G; Babaei M; Iraji H; Barzegartahamtan M; Ay MR; Mahdavi SR Biomed Phys Eng Express; 2023 Dec; 10(1):. PubMed ID: 37995359 [No Abstract] [Full Text] [Related]
11. Computed tomography-based radiomics machine learning classifiers to differentiate type I and type II epithelial ovarian cancers. Li J; Li X; Ma J; Wang F; Cui S; Ye Z Eur Radiol; 2023 Jul; 33(7):5193-5204. PubMed ID: 36515713 [TBL] [Abstract][Full Text] [Related]
12. Noninvasive Assessment of HER2 Expression Status in Gastric Cancer Using Jiang X; Li T; Wang J; Zhang Z; Chen X; Zhang J; Zhao X Cancer Biother Radiopharm; 2024 Apr; 39(3):169-177. PubMed ID: 38193811 [No Abstract] [Full Text] [Related]
13. Stacking Ensemble Learning-Based [ Zhao S; Wang J; Jin C; Zhang X; Xue C; Zhou R; Zhong Y; Liu Y; He X; Zhou Y; Xu C; Zhang L; Qian W; Zhang H; Zhang X; Tian M J Nucl Med; 2023 Oct; 64(10):1603-1609. PubMed ID: 37500261 [TBL] [Abstract][Full Text] [Related]
14. Role of Radiomics Features and Machine Learning for the Histological Classification of Stage I and Stage II NSCLC at [ Dondi F; Gatta R; Albano D; Bellini P; Camoni L; Treglia G; Bertagna F J Clin Med; 2022 Dec; 12(1):. PubMed ID: 36615053 [TBL] [Abstract][Full Text] [Related]
15. [Evaluation of extravascular lung water index in critically ill patients based on lung ultrasound radiomics analysis combined with machine learning]. Meng W; Zhang C; Hu J; Tang Z Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Oct; 35(10):1074-1079. PubMed ID: 37873713 [TBL] [Abstract][Full Text] [Related]
16. Machine learning models combining computed tomography semantic features and selected clinical variables for accurate prediction of the pathological grade of bladder cancer. Deng Z; Dong W; Xiong S; Jin D; Zhou H; Zhang L; Xie L; Deng Y; Xu R; Fan B Front Oncol; 2023; 13():1166245. PubMed ID: 37223680 [TBL] [Abstract][Full Text] [Related]
17. Applying a nomogram based on preoperative CT to predict early recurrence of laryngeal squamous cell carcinoma after surgery. Yao Y; Jia C; Zhang H; Mou Y; Wang C; Han X; Yu P; Mao N; Song X J Xray Sci Technol; 2023; 31(3):435-452. PubMed ID: 36806538 [TBL] [Abstract][Full Text] [Related]
18. Use of radiomics based on Zhou Y; Ma XL; Zhang T; Wang J; Zhang T; Tian R Eur J Nucl Med Mol Imaging; 2021 Aug; 48(9):2904-2913. PubMed ID: 33547553 [TBL] [Abstract][Full Text] [Related]
19. Machine learning based on clinico-biological features integrated Ren C; Zhang J; Qi M; Zhang J; Zhang Y; Song S; Sun Y; Cheng J Eur J Nucl Med Mol Imaging; 2021 May; 48(5):1538-1549. PubMed ID: 33057772 [TBL] [Abstract][Full Text] [Related]
20. A Machine-Learning Approach Using PET-Based Radiomics to Predict the Histological Subtypes of Lung Cancer. Hyun SH; Ahn MS; Koh YW; Lee SJ Clin Nucl Med; 2019 Dec; 44(12):956-960. PubMed ID: 31689276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]