These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 39063054)
1. Plant Hormone Pathway Is Involved in Regulating the Embryo Development Mechanism of the Zhu Y; Zeng X; Zhu T; Jiang H; Lei P; Zhang H; Chen H Int J Mol Sci; 2024 Jul; 25(14):. PubMed ID: 39063054 [TBL] [Abstract][Full Text] [Related]
2. Study on the Flower Induction Mechanism of Liu Y; Lyu T; Lyu Y Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175398 [TBL] [Abstract][Full Text] [Related]
3. Comparative Transcriptomic Profiling to Understand Pre- and Post-Ripening Hormonal Regulations and Anthocyanin Biosynthesis in Early Ripening Apple Fruit. Onik JC; Hu X; Lin Q; Wang Z Molecules; 2018 Jul; 23(8):. PubMed ID: 30065188 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome analysis reveals key developmental and metabolic regulatory aspects of oil palm (Elaeis guineensis Jacq.) during zygotic embryo development. Zhang A; Jin L; Yarra R; Cao H; Chen P; John Martin JJ BMC Plant Biol; 2022 Mar; 22(1):112. PubMed ID: 35279075 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional profiling of canola developing embryo and identification of the important roles of BnDof5.6 in embryo development and fatty acids synthesis. Deng W; Yan F; Zhang X; Tang Y; Yuan Y Plant Cell Physiol; 2015 Aug; 56(8):1624-40. PubMed ID: 26092973 [TBL] [Abstract][Full Text] [Related]
6. A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach. Bonghi C; Trainotti L; Botton A; Tadiello A; Rasori A; Ziliotto F; Zaffalon V; Casadoro G; Ramina A BMC Plant Biol; 2011 Jun; 11():107. PubMed ID: 21679395 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome sequencing and endogenous phytohormone analysis reveal new insights in CPPU controlling fruit development in kiwifruit (Actinidia chinensis). Wu L; Lan J; Xiang X; Xiang H; Jin Z; Khan S; Liu Y PLoS One; 2020; 15(10):e0240355. PubMed ID: 33044982 [TBL] [Abstract][Full Text] [Related]
8. Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development. Mounet F; Moing A; Kowalczyk M; Rohrmann J; Petit J; Garcia V; Maucourt M; Yano K; Deborde C; Aoki K; Bergès H; Granell A; Fernie AR; Bellini C; Rothan C; Lemaire-Chamley M J Exp Bot; 2012 Aug; 63(13):4901-17. PubMed ID: 22844095 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome profiling reveals the regulatory mechanism underlying pollination dependent and parthenocarpic fruit set mainly mediated by auxin and gibberellin. Tang N; Deng W; Hu G; Hu N; Li Z PLoS One; 2015; 10(4):e0125355. PubMed ID: 25909657 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome and hormone analyses provide insights into hormonal regulation in strawberry ripening. Gu T; Jia S; Huang X; Wang L; Fu W; Huo G; Gan L; Ding J; Li Y Planta; 2019 Jul; 250(1):145-162. PubMed ID: 30949762 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome analysis unravels spatiotemporal modulation of phytohormone-pathway expression underlying gibberellin-induced parthenocarpic fruit set in San Pedro-type fig (Ficus carica L.). Chai L; Chai P; Chen S; Flaishman MA; Ma H BMC Plant Biol; 2018 Jun; 18(1):100. PubMed ID: 29859043 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid. Chen J; Mao L; Lu W; Ying T; Luo Z Planta; 2016 Jan; 243(1):183-97. PubMed ID: 26373937 [TBL] [Abstract][Full Text] [Related]
13. The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development. de Jong M; Wolters-Arts M; García-Martínez JL; Mariani C; Vriezen WH J Exp Bot; 2011 Jan; 62(2):617-26. PubMed ID: 20937732 [TBL] [Abstract][Full Text] [Related]
14. The Interaction between DELLA and ARF/IAA Mediates Crosstalk between Gibberellin and Auxin Signaling to Control Fruit Initiation in Tomato. Hu J; Israeli A; Ori N; Sun TP Plant Cell; 2018 Aug; 30(8):1710-1728. PubMed ID: 30008445 [TBL] [Abstract][Full Text] [Related]
15. RNA-Seq Reveals That Multiple Pathways Are Involved in Tuber Expansion in Tiger Nuts ( Hou G; Wu G; Jiang H; Bai X; Chen Y Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791140 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome Analysis Reveals that Red and Blue Light Regulate Growth and Phytohormone Metabolism in Norway Spruce [Picea abies (L.) Karst]. OuYang F; Mao JF; Wang J; Zhang S; Li Y PLoS One; 2015; 10(8):e0127896. PubMed ID: 26237749 [TBL] [Abstract][Full Text] [Related]
17. A transcriptome approach towards understanding the development of ripening capacity in 'Bartlett' pears (Pyrus communis L.). Nham NT; de Freitas ST; Macnish AJ; Carr KM; Kietikul T; Guilatco AJ; Jiang CZ; Zakharov F; Mitcham EJ BMC Genomics; 2015 Oct; 16():762. PubMed ID: 26452470 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber (Cucumis sativus L.). Li J; Wu Z; Cui L; Zhang T; Guo Q; Xu J; Jia L; Lou Q; Huang S; Li Z; Chen J Plant Cell Physiol; 2014 Jul; 55(7):1325-42. PubMed ID: 24733865 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide gene network uncover temporal and spatial changes of genes in auxin homeostasis during fruit development in strawberry (F. × ananassa). Jang YJ; Kim T; Lin M; Kim J; Begcy K; Liu Z; Lee S BMC Plant Biol; 2024 Sep; 24(1):876. PubMed ID: 39304822 [TBL] [Abstract][Full Text] [Related]
20. Genome-Wide Identification, Expression, and Interaction Analysis of the Auxin Response Factor and Gao X; Liu X; Zhang H; Cheng L; Wang X; Zhen C; Du H; Chen Y; Yu H; Zhu B; Xiao J Int J Mol Sci; 2024 Aug; 25(15):. PubMed ID: 39125955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]