These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 39063186)

  • 1. The Effect of Broccoli Glucosinolates Hydrolysis Products on
    Román J; Lagos A; Mahn A; Quintero J
    Int J Mol Sci; 2024 Jul; 25(14):. PubMed ID: 39063186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oligomycin-producing
    Louviot F; Abdelrahman O; Abou-Mansour E; L'Haridon F; Allard P-M; Falquet L; Weisskopf L
    mSphere; 2024 Jul; 9(7):e0066723. PubMed ID: 38864637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro activity of glucosinolates and their degradation products against brassica-pathogenic bacteria and fungi.
    Sotelo T; Lema M; Soengas P; Cartea ME; Velasco P
    Appl Environ Microbiol; 2015 Jan; 81(1):432-40. PubMed ID: 25362058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sclerotinia sclerotiorum Response to Long Exposure to Glucosinolate Hydrolysis Products by Transcriptomic Approach.
    Madloo P; Lema M; Cartea ME; Soengas P
    Microbiol Spectr; 2021 Sep; 9(1):e0018021. PubMed ID: 34259546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of glucosinolates and their breakdown products on necrotrophic fungi.
    Buxdorf K; Yaffe H; Barda O; Levy M
    PLoS One; 2013; 8(8):e70771. PubMed ID: 23940639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits.
    Nguyen XH; Naing KW; Lee YS; Moon JH; Lee JH; Kim KY
    J Basic Microbiol; 2015 May; 55(5):625-34. PubMed ID: 25081931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea.
    Gao P; Qin J; Li D; Zhou S
    PLoS One; 2018; 13(1):e0190932. PubMed ID: 29320571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of the phytopathogen Botrytis cinerea using adipic acid monoethyl ester.
    Vicedo B; de la O Leyva M; Flors V; Finiti I; Del Amo G; Walters D; Real MD; García-Agustín P; González-Bosch C
    Arch Microbiol; 2006 Jan; 184(5):316-26. PubMed ID: 16261314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the fungitoxic activity on Botrytis cinerea of the aristolochic acids I and II.
    Melo R; Sanhueza L; Mendoza L; Cotoras M
    Lett Appl Microbiol; 2019 Jan; 68(1):48-55. PubMed ID: 30325521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanistic insights of essential oil of Mentha piperita to control Botrytis cinerea and the prospection of lipid nanoparticles to its application.
    Fuentes JM; Jofré I; Tortella G; Benavides-Mendoza A; Diez MC; Rubilar O; Fincheira P
    Microbiol Res; 2024 Sep; 286():127792. PubMed ID: 38852300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MFS transporter from Botrytis cinerea provides tolerance to glucosinolate-breakdown products and is required for pathogenicity.
    Vela-Corcía D; Aditya Srivastava D; Dafa-Berger A; Rotem N; Barda O; Levy M
    Nat Commun; 2019 Jun; 10(1):2886. PubMed ID: 31253809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-Structural Alterations in
    Youssef K; Roberto SR; de Oliveira AG
    Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31597236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifungal activity of resveratrol against Botrytis cinerea is improved using 2-furyl derivatives.
    Caruso F; Mendoza L; Castro P; Cotoras M; Aguirre M; Matsuhiro B; Isaacs M; Rossi M; Viglianti A; Antonioletti R
    PLoS One; 2011; 6(10):e25421. PubMed ID: 22022392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory activity of tea polyphenol and Hanseniaspora uvarum against Botrytis cinerea infections.
    Liu HM; Guo JH; Cheng YJ; Liu P; Long CA; Deng BX
    Lett Appl Microbiol; 2010 Sep; 51(3):258-63. PubMed ID: 20633212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of
    Dėnė L; Valiuškaitė A
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antifungal activity of proteolytic fraction (P1G10) from (Vasconcellea cundinamarcensis) latex inhibit cell growth and cell wall integrity in Botrytis cinerea.
    Torres-Ossandón MJ; Vega-Gálvez A; Salas CE; Rubio J; Silva-Moreno E; Castillo L
    Int J Food Microbiol; 2019 Jan; 289():7-16. PubMed ID: 30193124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-Synthesis of Chloroxaloterpin A and B and Their Antifungal Activity against
    Zhang L; Wang X; Bi Y; Yu Z
    J Agric Food Chem; 2022 Jun; 70(23):7070-7076. PubMed ID: 35652483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscopic and Transcriptomic Analyses to Elucidate Antifungal Mechanisms of
    Jin J; Yang RD; Cao H; Song GN; Cui F; Zhou S; Yuan J; Qi H; Wang JD; Chen J
    J Agric Food Chem; 2024 Aug; 72(31):17405-17416. PubMed ID: 39042819
    [No Abstract]   [Full Text] [Related]  

  • 19. Different Antifungal Activity of
    Righini H; Baraldi E; García Fernández Y; Martel Quintana A; Roberti R
    Mar Drugs; 2019 May; 17(5):. PubMed ID: 31137530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action mechanism for 3β-hydroxykaurenoic acid and 4,4-dimethylanthracene-1,9,10(4H)-trione on Botrytis cinerea.
    Mendoza L; Ribera A; Saavedra A; Silva E; Araya-Maturana R; Cotoras M
    Mycologia; 2015; 107(4):661-6. PubMed ID: 25977212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.