These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39063674)
1. A Simulation Study on Sieving as a Powder Deposition Method in Powder Bed Fusion Processes. Avrampos P; Vosniakos GC Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063674 [TBL] [Abstract][Full Text] [Related]
2. Powder Spreading Mechanism in Laser Powder Bed Fusion Additive Manufacturing: Experiments and Computational Approach Using Discrete Element Method. Habiba U; Hebert RJ Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049118 [TBL] [Abstract][Full Text] [Related]
3. Powder Surface Roughness as Proxy for Bed Density in Powder Bed Fusion of Polymers. Sillani F; Schiegg R; Schmid M; MacDonald E; Wegener K Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012103 [TBL] [Abstract][Full Text] [Related]
4. Discrete Element Method Analysis of the Spreading Mechanism and Its Influence on Powder Bed Characteristics in Additive Manufacturing. Lampitella V; Trofa M; Astarita A; D'Avino G Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33918200 [TBL] [Abstract][Full Text] [Related]
5. Discrete Element Simulation of the Effect of Roller-Spreading Parameters on Powder-Bed Density in Additive Manufacturing. Zhang J; Tan Y; Bao T; Xu Y; Xiao X; Jiang S Materials (Basel); 2020 May; 13(10):. PubMed ID: 32429173 [TBL] [Abstract][Full Text] [Related]
6. Material Evaluation and Dynamic Powder Deposition Modeling of PEEK/CF Composite for Laser Powder Bed Fusion Process. Li J; Peng F; Li H; Ru Z; Fu J; Zhu W Polymers (Basel); 2023 Jun; 15(13):. PubMed ID: 37447508 [TBL] [Abstract][Full Text] [Related]
7. Occupational exposure during metal additive manufacturing: A case study of laser powder bed fusion of aluminum alloy. Azzougagh MN; Keller FX; Cabrol E; Cici M; Pourchez J J Occup Environ Hyg; 2021 Jun; 18(6):223-236. PubMed ID: 33989129 [TBL] [Abstract][Full Text] [Related]
8. Prototype Design for Grading Structures in Powder Bed Fusion Processes. Mann M; Davies R; Lawrence C; Ghita O 3D Print Addit Manuf; 2023 Dec; 10(6):1320-1335. PubMed ID: 38116209 [TBL] [Abstract][Full Text] [Related]
9. Influence of Powder Deposition on Powder Bed and Specimen Properties. Beitz S; Uerlich R; Bokelmann T; Diener A; Vietor T; Kwade A Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669274 [TBL] [Abstract][Full Text] [Related]
10. Investigations on the Effect of Layers' Thickness and Orientations in the Machining of Additively Manufactured Stainless Steel 316L. Dabwan A; Anwar S; Al-Samhan AM; AlFaify A; Nasr MM Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33916449 [TBL] [Abstract][Full Text] [Related]
11. A new variant of the inherent strain method for the prediction of distortion in powder bed fusion additive manufacturing processes. Pourabdollah P; Farhang Mehr F; Cockcroft S; Maijer D Int J Adv Manuf Technol; 2024; 131(9-10):4575-4594. PubMed ID: 38559377 [TBL] [Abstract][Full Text] [Related]
12. Development and Validation of Empirical Models to Predict Metal Additively Manufactured Part Density and Surface Roughness from Powder Characteristics. Quinn P; Uí Mhurchadha SM; Lawlor J; Raghavendra R Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806831 [TBL] [Abstract][Full Text] [Related]
13. Impact of varying analytical methodologies on grain particle size determination. Kalivoda JR; Jones CK; Stark CR J Anim Sci; 2017 Jan; 95(1):113-119. PubMed ID: 28177377 [TBL] [Abstract][Full Text] [Related]
14. Formation processes for large ejecta and interactions with melt pool formation in powder bed fusion additive manufacturing. Nassar AR; Gundermann MA; Reutzel EW; Guerrier P; Krane MH; Weldon MJ Sci Rep; 2019 Mar; 9(1):5038. PubMed ID: 30911016 [TBL] [Abstract][Full Text] [Related]
15. CFD-DEM investigation of the effects of aperture size for a capsule-based dry powder inhaler. Zhu Q; Kakhi M; Jayasundara C; Walenga R; Behara SRB; Chan HK; Yang R Int J Pharm; 2023 Nov; 647():123556. PubMed ID: 37890648 [TBL] [Abstract][Full Text] [Related]
16. Study on the Powder-Spreading Process of Walnut Shell/Co-PES Biomass Composite Powder in Additive Manufacturing. Yu Y; Ma T; Wang S; Jiang M; Gao S; Guo Y; Jiang T; Doumbia BS; Yan B; Shen S Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374477 [TBL] [Abstract][Full Text] [Related]
17. A Comparative Evaluation of Powder Characteristics of Recycled Material from Bronze Grinding Chips for Additive Manufacturing. Uhlmann E; Polte J; Fasselt JM; Müller V; Klötzer-Freese C; Kleba-Ehrhardt R; Biegler M; Rethmeier M Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063688 [TBL] [Abstract][Full Text] [Related]
18. The Role of Roller Rotation Pattern in the Spreading Process of Polymer/Short-Fiber Composite Powder in Selective Laser Sintering. Cheng T; Chen H; Wei Q Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35745919 [TBL] [Abstract][Full Text] [Related]
19. Effects of the Energy Density on Pores, Hardness, Surface Roughness, and Tensile Characteristics of Deposited ASTM 316L Specimens with Powder-Bed Fusion Process. Lee HJ Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234012 [TBL] [Abstract][Full Text] [Related]
20. Particle Behavior and Aperture Optimization of Variable Vibration-Amplitude Screening Based on Discrete Element Method Simulation. Qiao J; Yang J; Lu J ACS Omega; 2023 Aug; 8(34):30976-30989. PubMed ID: 37663477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]