These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 39063685)

  • 1. Modeling of LCF Behaviour on AISI316L Steel Applying the Armstrong-Frederick Kinematic Hardening Model.
    Pate SB; Dundulis G; Griskevicius P
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain Range Dependent Cyclic Hardening of 08Ch18N10T Stainless Steel-Experiments and Simulations.
    Fumfera J; Halama R; Procházka R; Gál P; Španiel M
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31861206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling Cyclic Behaviour of Martensitic Steel with J2 Plasticity and Crystal Plasticity.
    Sajjad HM; Hanke S; Güler S; Ul Hassan H; Fischer A; Hartmaier A
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31159157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comprehensive Numerical Approach for Analyzing the Residual Stresses in AISI 301LN Stainless Steel Induced by Shot Peening.
    Zhou F; Jiang W; Du Y; Xiao C
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31614919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparison of Amplitude-and Time-Dependent Cyclic Deformation Behavior for Fully-Austenite Stainless Steel 316L and Duplex Stainless Steel 2205.
    Li S; Jiang W; Xie X; Dong Z
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic Plasticity and Low Cycle Fatigue of an AISI 316L Stainless Steel: Experimental Evaluation of Material Parameters for Durability Design.
    Pelegatti M; Lanzutti A; Salvati E; Srnec Novak J; De Bona F; Benasciutti D
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34199076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse Method to Determine Fatigue Properties of Materials by Combining Cyclic Indentation and Numerical Simulation.
    Sajjad HM; Ul Hassan H; Kuntz M; Schäfer BJ; Sonnweber-Ribic P; Hartmaier A
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32668811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of Plastic Strain at Notch Root of Steel Specimens Undergoing Asymmetric Fatigue Cycles: Analysis and Simulation.
    Hatami F; Varvani-Farahani A
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite Plane Strain Bending under Tension of Isotropic and Kinematic Hardening Sheets.
    Strashnov S; Alexandrov S; Lang L
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33801286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformation and Fatigue Behaviour of A356-T7 Cast Aluminium Alloys Used in High Specific Power IC Engines.
    Natesan E; Eriksson S; Ahlström J; Persson C
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31540499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fine Grain, High Mn Steel with Excellent Cryogenic Temperature Properties and Corresponding Constitutive Behaviour.
    Wang Y; Shi B; He Y; Zhang H; Peng Y; Wang T
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29414840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Cycle Fatigue Behavior and the Combined Cyclic Hardening Material Model of Plate-Shaped Zn-22Al Alloy for Seismic Dampers.
    Liu Z; Han J; Yang P
    Materials (Basel); 2024 May; 17(9):. PubMed ID: 38730947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of the Johnson-Cook plasticity model in the finite element simulations of the nanoindentation of the cortical bone.
    Remache D; Semaan M; Rossi JM; Pithioux M; Milan JL
    J Mech Behav Biomed Mater; 2020 Jan; 101():103426. PubMed ID: 31557661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low Cycle Fatigue Life Evaluation of Notched Specimens Considering Strain Gradient.
    Qin S; Xiong Z; Ma Y; Zhang K
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32102226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Microstructure for AISI316L Steel from Numerical Simulation of Laser Powder Bed Fusion.
    Abrami MB; Tocci M; Obeidi MA; Brabazon D; Pola A
    Met Mater Int; 2022; 28(11):2735-2746. PubMed ID: 36340187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse Method to Determine Parameters for Time-Dependent and Cyclic Plastic Material Behavior from Instrumented Indentation Tests.
    Sajjad HM; Chudoba T; Hartmaier A
    Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and Numerical Research of Post-Tensioned Concrete Beams.
    Jancy A; Stolarski A; Zychowicz J
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic Hardening of TRIP780 Steel Sheet: Experiments and Analytical Modeling.
    Wang J; Han M; Zhang C; Rayhan HMA; Li X; Lou Y
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive Model for Equivalent Stress-Plastic Strain Curves Including Full-Range Strain Hardening Behavior of High-Strength Steel at Elevated Temperatures.
    Zeng X; Wu W; Zou J; Elchalakani M
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the Elastic-Plastic Correlation of Low-Cycle Fatigue for Variable Asymmetric Loadings.
    Zhang J; Li W; Dai H; Liu N; Lin J
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32481498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.