These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 39063724)
1. Investigating Enhanced Microwave Absorption of CNTs@Nd Wang C; Feng X; Yu C; Zhang L; Zhou S; Liu Y; Huang J; Li H Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063724 [TBL] [Abstract][Full Text] [Related]
2. The Ordered Mesoporous Barium Ferrite Compounded with Nitrogen-Doped Reduced Graphene Oxide for Microwave Absorption Materials. He F; Zhao W; Cao L; Liu Z; Sun L; Zhang Z; Zhang H; Qi T Small; 2023 Aug; 19(32):e2205644. PubMed ID: 37078836 [TBL] [Abstract][Full Text] [Related]
3. Microwave Absorption Properties of Magnetite Particles Extracted from Nickel Slag. Yan P; Shen Y; Du X; Chong J Materials (Basel); 2020 May; 13(9):. PubMed ID: 32392790 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Polarization from Hollow Cube-like ZnSnO Wang L; Li X; Li Q; Zhao Y; Che R ACS Appl Mater Interfaces; 2018 Jul; 10(26):22602-22610. PubMed ID: 29893114 [TBL] [Abstract][Full Text] [Related]
5. Effect of Ball-Milling Process on Microwave Absorption Behaviors of Flaky Carbonyl Iron Powders. Yang S; Wang F; Zhang Z; Liu Z; Zhang J; Jiang K Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374580 [TBL] [Abstract][Full Text] [Related]
6. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures. Najim M; Modi G; Mishra YK; Adelung R; Singh D; Agarwala V Phys Chem Chem Phys; 2015 Sep; 17(35):22923-33. PubMed ID: 26267361 [TBL] [Abstract][Full Text] [Related]
7. The effect of polymerization temperature and reaction time on microwave absorption properties of Co-doped ZnNi ferrite/polyaniline composites. Lei Y; Yao Z; Lin H; Zhou J; Haidry AA; Liu P RSC Adv; 2018 Aug; 8(51):29344-29355. PubMed ID: 35547984 [TBL] [Abstract][Full Text] [Related]
8. Ultralight Three-Dimensional Hierarchical Cobalt Nanocrystals/N-Doped CNTs/Carbon Sponge Composites with a Hollow Skeleton toward Superior Microwave Absorption. Yang N; Luo ZX; Zhu GR; Chen SC; Wang XL; Wu G; Wang YZ ACS Appl Mater Interfaces; 2019 Oct; 11(39):35987-35998. PubMed ID: 31496213 [TBL] [Abstract][Full Text] [Related]
9. Construction of MnO-skeleton cross-linked by carbon nanotubes networks for efficient microwave absorption. Duan Y; Jiang B; Ma C; Wang X; Wang Y; Li R; Yang W; Li Y J Colloid Interface Sci; 2021 Nov; 602():778-788. PubMed ID: 34214732 [TBL] [Abstract][Full Text] [Related]
10. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Qiu X; Wang L; Zhu H; Guan Y; Zhang Q Nanoscale; 2017 Jun; 9(22):7408-7418. PubMed ID: 28540377 [TBL] [Abstract][Full Text] [Related]
11. Study on preparation of the core-nanoshell composite absorbers by high-energy ball milling at room temperature. Che R; Gao H; Yu B; Wang S; Wang C J Nanosci Nanotechnol; 2012 Feb; 12(2):1594-8. PubMed ID: 22630008 [TBL] [Abstract][Full Text] [Related]
12. Structural, Electromagnetic and Microwave Properties of Magnetite Extracted from Mill Scale Waste via Conventional Ball Milling and Mechanical Alloying Techniques. Elmahaishi MF; Azis RS; Ismail I; Mustaffa MS; Abbas Z; Matori KA; Muhammad FD; Saat NK; Nazlan R; Ibrahim IR; Abdullah NH; Mokhtar N Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832475 [TBL] [Abstract][Full Text] [Related]
13. Enhanced microwave absorption performance of Fe Luo X; Xie H; Cao J; Lu Y; Tao S; Meng Z; Pu L; Sun L; He P; Liu Z RSC Adv; 2024 Mar; 14(15):10687-10696. PubMed ID: 38567341 [TBL] [Abstract][Full Text] [Related]
14. Hierarchical Carbon Nanotube-Coated Carbon Fiber: Ultra Lightweight, Thin, and Highly Efficient Microwave Absorber. Singh SK; Akhtar MJ; Kar KK ACS Appl Mater Interfaces; 2018 Jul; 10(29):24816-24828. PubMed ID: 29973041 [TBL] [Abstract][Full Text] [Related]
15. A Study on Microwave Absorption Properties of Carbon Black and Ni Ibrahim IR; Matori KA; Ismail I; Awang Z; Rusly SNA; Nazlan R; Mohd Idris F; Muhammad Zulkimi MM; Abdullah NH; Mustaffa MS; Shafiee FN; Ertugrul M Sci Rep; 2020 Feb; 10(1):3135. PubMed ID: 32081972 [TBL] [Abstract][Full Text] [Related]
17. Preparation of Honeycomb SnO₂ Foams and Configuration-Dependent Microwave Absorption Features. Zhao B; Fan B; Xu Y; Shao G; Wang X; Zhao W; Zhang R ACS Appl Mater Interfaces; 2015 Dec; 7(47):26217-25. PubMed ID: 26552325 [TBL] [Abstract][Full Text] [Related]
18. Interface Modulating CNTs@PANi Hybrids by Controlled Unzipping of the Walls of CNTs To Achieve Tunable High-Performance Microwave Absorption. Wang H; Meng F; Huang F; Jing C; Li Y; Wei W; Zhou Z ACS Appl Mater Interfaces; 2019 Mar; 11(12):12142-12153. PubMed ID: 30834737 [TBL] [Abstract][Full Text] [Related]
19. Preparation of a Chemically Reduced Graphene Oxide Reinforced Epoxy Resin Polymer as a Composite for Electromagnetic Interference Shielding and Microwave-Absorbing Applications. Ahmad AF; Ab Aziz S; Abbas Z; Obaiys SJ; Khamis AM; Hussain IR; Zaid MHM Polymers (Basel); 2018 Oct; 10(11):. PubMed ID: 30961105 [TBL] [Abstract][Full Text] [Related]
20. Investigation of Electromagnetic Wave Absorption Properties of Ni-Co and MWCNT Nanocomposites. Ebrahimzadeh M; Gharaati A; Jangjoo A; Rezazadeh H Recent Pat Nanotechnol; 2024; 18(4):519-526. PubMed ID: 36411549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]