These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 39063883)

  • 1. Design of Locally Resonant Acoustic Metamaterials with Specified Band Gaps Using Multi-Material Topology Optimization.
    Chen H; Fu Y; Ling L; Hu Y; Li L
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximizing phononic band gaps in piezocomposite materials by means of topology optimization.
    Vatanabe SL; Paulino GH; Silva EC
    J Acoust Soc Am; 2014 Aug; 136(2):494-501. PubMed ID: 25096084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and optimization of three-dimensional composite multilayer cylindrical pentamode metamaterials for controlling low frequency acoustic waves.
    Cai C; Wang X; Wang Q; Li M; He G; Wang Z; Qin Y
    Sci Rep; 2022 Apr; 12(1):5594. PubMed ID: 35379842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergent subharmonic band gaps in nonlinear locally resonant metamaterials induced by autoparametric resonance.
    Silva PB; Leamy MJ; Geers MGD; Kouznetsova VG
    Phys Rev E; 2019 Jun; 99(6-1):063003. PubMed ID: 31330758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plate-type elastic metamaterials for low-frequency broadband elastic wave attenuation.
    Li Y; Zhu L; Chen T
    Ultrasonics; 2017 Jan; 73():34-42. PubMed ID: 27597307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Additive Manufacturing of 3D Phononic Band Gap Structures Based on Gradient Based Optimization.
    Wormser M; Wein F; Stingl M; Körner C
    Materials (Basel); 2017 Sep; 10(10):. PubMed ID: 28937643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic crystal topological design for polarized and polarization-independent band gaps by gradient-free topology optimization.
    Yan Y; Liu P; Zhang X; Luo Y
    Opt Express; 2021 Aug; 29(16):24861-24883. PubMed ID: 34614832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nacre-like block lattice metamaterials with targeted phononic band gap and mechanical properties.
    Bollineni RK; Sayed Ahmed M; Shahab S; Mirzaeifar R
    J Mech Behav Biomed Mater; 2024 Jun; 154():106511. PubMed ID: 38518512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Band gap characteristics of new composite multiple locally resonant phononic crystal metamaterial.
    Xiao P; Miao L; Zheng H; Lei L
    J Phys Condens Matter; 2024 Feb; 36(19):. PubMed ID: 38316041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing buckling to design tunable locally resonant acoustic metamaterials.
    Wang P; Casadei F; Shan S; Weaver JC; Bertoldi K
    Phys Rev Lett; 2014 Jul; 113(1):014301. PubMed ID: 25032927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic topology optimization of solid-solid phononic crystals for multiple separate band-gaps with different polarizations.
    Liu ZF; Wu B; He CF
    Ultrasonics; 2016 Feb; 65():249-57. PubMed ID: 26456279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning-Accelerated Designs of Tunable Magneto-Mechanical Metamaterials.
    Ma C; Chang Y; Wu S; Zhao RR
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35833606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locally Resonant Phononic Crystals at Low frequencies Based on Porous SiC Multilayer.
    Mehaney A; Ahmed AM
    Sci Rep; 2019 Oct; 9(1):14767. PubMed ID: 31611574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pentamode metamaterials with ultra-low-frequency single-mode band gap based on constituent materials.
    Huang Y; Zhang X
    J Phys Condens Matter; 2021 Apr; 33(18):. PubMed ID: 33721850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials.
    Qureshi A; Li B; Tan KT
    Sci Rep; 2016 Jun; 6():28314. PubMed ID: 27329828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-space origin of topological band gaps, localization, and reentrant phase transitions in gyroscopic metamaterials.
    Mitchell NP; Turner AM; Irvine WTM
    Phys Rev E; 2021 Aug; 104(2-2):025007. PubMed ID: 34525529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum.
    Sridhar A; Kouznetsova VG; Geers MG
    Comput Mech; 2016; 57():423-435. PubMed ID: 27429501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological Design of Cellular Phononic Band Gap Crystals.
    Li YF; Huang X; Zhou S
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption.
    Matlack KH; Bauhofer A; Krödel S; Palermo A; Daraio C
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8386-90. PubMed ID: 27410042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-chip higher-order topological micromechanical metamaterials.
    Wu Y; Yan M; Lin ZK; Wang HX; Li F; Jiang JH
    Sci Bull (Beijing); 2021 Oct; 66(19):1959-1966. PubMed ID: 36654165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.