These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 39064329)

  • 1. Label-Free Continuous Cell Sorting Using Optofluidic Chip.
    Zhang Y; Zhang T; Zhang X; Cheng J; Zhang S
    Micromachines (Basel); 2024 Jun; 15(7):. PubMed ID: 39064329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optofluidic Tweezers: Efficient and Versatile Micro/Nano-Manipulation Tools.
    Zhu Y; You M; Shi Y; Huang H; Wei Z; He T; Xiong S; Wang Z; Cheng X
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniaturized optical fiber tweezers for cell separation by optical force.
    Liu S; Li Z; Weng Z; Li Y; Shui L; Jiao Z; Chen Y; Luo A; Xing X; He S
    Opt Lett; 2019 Apr; 44(7):1868-1871. PubMed ID: 30933168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies.
    Wang X; Chen S; Kong M; Wang Z; Costa KD; Li RA; Sun D
    Lab Chip; 2011 Nov; 11(21):3656-62. PubMed ID: 21918752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated optofluidic platform for Raman-activated cell sorting.
    Lau AY; Lee LP; Chan JW
    Lab Chip; 2008 Jul; 8(7):1116-20. PubMed ID: 18584087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free biological sample detection and non-contact separation system based on microfluidic chip.
    Lv N; Zhang L; Yang Z; Wang H; Yang N; Li H
    Rev Sci Instrum; 2022 Jun; 93(6):063104. PubMed ID: 35778042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Inertial label-free sorting and chemotaxis of polymorphonuclear neutrophil in sepsis patients based on microfluidic technology].
    Gao C; Yang X; Liu L; Wang Y; Zhu L; Zhou J; Liu Y; Yang K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Dec; 40(6):1217-1226. PubMed ID: 38151946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optofluidic Particle Manipulation: Optical Trapping in a Thin-Membrane Microchannel.
    Walker ZJ; Wells T; Belliston E; Walker SB; Zeller C; Sampad MJN; Saiduzzaman SM; Schmidt H; Hawkins AR
    Biosensors (Basel); 2022 Aug; 12(9):. PubMed ID: 36140075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of two surface acoustic wave sorting chips on particles multi-level sorting.
    Liu G; He F; Li Y; Zhao H; Li X; Tang H; Li Z; Yang Z; Zhang Y
    Biomed Microdevices; 2019 Jun; 21(3):59. PubMed ID: 31227912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intuitive, image-based cell sorting using optofluidic cell sorting.
    Kovac JR; Voldman J
    Anal Chem; 2007 Dec; 79(24):9321-30. PubMed ID: 18004819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical deflection and sorting of microparticles in a near-field optical geometry.
    Marchington RF; Mazilu M; Kuriakose S; Garcés-Chávez V; Reece PJ; Krauss TF; Gu M; Dholakia K
    Opt Express; 2008 Mar; 16(6):3712-26. PubMed ID: 18542466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creating Multifunctional Optofluidic Potential Wells for Nanoparticle Manipulation.
    Nan F; Yan Z
    Nano Lett; 2018 Nov; 18(11):7400-7406. PubMed ID: 30351963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmofluidic Microlenses for Label-Free Optical Sorting of Exosomes.
    Zhu X; Cicek A; Li Y; Yanik AA
    Sci Rep; 2019 Jun; 9(1):8593. PubMed ID: 31197196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems.
    Lv C; Xia H; Guan W; Sun YL; Tian ZN; Jiang T; Wang YS; Zhang YL; Chen QD; Ariga K; Yu YD; Sun HB
    Sci Rep; 2016 Jan; 6():19801. PubMed ID: 26823292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optofluidic integration for microanalysis.
    Hunt HC; Wilkinson JS
    Microfluid Nanofluidics; 2008; 4(1):53-79. PubMed ID: 32214954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opto-hydrodynamic tweezers.
    Vasantham S; Kotnala A; Promovych Y; Garstecki P; Derzsi L
    Lab Chip; 2024 Jan; 24(3):517-527. PubMed ID: 38165913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing.
    Liu Y; Yu M
    Opt Express; 2009 Aug; 17(16):13624-38. PubMed ID: 19654770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical chromatography using a photonic crystal fiber with on-chip fluorescence excitation.
    Ashok PC; Marchington RF; Mthunzi P; Krauss TF; Dholakia K
    Opt Express; 2010 Mar; 18(6):6396-407. PubMed ID: 20389663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (microFACS).
    Cho SH; Chen CH; Tsai FS; Godin JM; Lo YH
    Lab Chip; 2010 Jun; 10(12):1567-73. PubMed ID: 20379604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Optical Tweezers for Particle Manipulation: Principles, Methods, and Applications.
    Ren Y; Chen Q; He M; Zhang X; Qi H; Yan Y
    ACS Nano; 2021 Apr; 15(4):6105-6128. PubMed ID: 33834771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.