These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 39064373)

  • 41. A computational model to design neural interfaces for lower-limb sensory neuroprostheses.
    Zelechowski M; Valle G; Raspopovic S
    J Neuroeng Rehabil; 2020 Feb; 17(1):24. PubMed ID: 32075654
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polyethylene glycol fusion repair of severed sciatic nerves accelerates recovery of nociceptive sensory perceptions in male and female rats of different strains.
    Zhou L; Venkudusamy K; Hibbard EA; Montoya Y; Olivarez A; Yang CZ; Leung A; Gokhale V; Periyasamy G; Pathak Z; Sengelaub DR; Bittner GD
    Neural Regen Res; 2025 Sep; 20(9):2667-2681. PubMed ID: 38934383
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Intraneural IFG-1 in Cryopreserved Nerve Isografts Increase Neural Regeneration and Functional Recovery in the Rat Sciatic Nerve.
    González Porto SA; Domenech N; Blanco FJ; Centeno Cortés A; Rivadulla Fernández C; Álvarez Jorge Á; Sánchez Ibáñez J; Rendal Vázquez E
    Neurosurgery; 2019 Sep; 85(3):423-431. PubMed ID: 30060164
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity.
    Sabetian P; Popovic MR; Yoo PB
    J Neural Eng; 2017 Jun; 14(3):036015. PubMed ID: 28251960
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biodegradable Nerve Guidance Conduit with Microporous and Micropatterned Poly(lactic-co-glycolic acid)-Accelerated Sciatic Nerve Regeneration.
    Kim SM; Lee MS; Jeon J; Lee DH; Yang K; Cho SW; Han I; Yang HS
    Macromol Biosci; 2018 Dec; 18(12):e1800290. PubMed ID: 30407714
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The resolution of neuropathic hyperalgesia following motor and sensory functional recovery in sciatic axonotmetic mononeuropathies.
    Kingery WS; Lu JD; Roffers JA; Kell DR
    Pain; 1994 Aug; 58(2):157-168. PubMed ID: 7816484
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mesenchymal stem cells in a polycaprolactone conduit promote sciatic nerve regeneration and sensory neuron survival after nerve injury.
    Frattini F; Lopes FR; Almeida FM; Rodrigues RF; Boldrini LC; Tomaz MA; Baptista AF; Melo PA; Martinez AM
    Tissue Eng Part A; 2012 Oct; 18(19-20):2030-9. PubMed ID: 22646222
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Estimation of the Electrode-Fiber Bioelectrical Coupling From Extracellularly Recorded Single Fiber Action Potentials.
    Qiao S; Stieglitz T; Yoshida K
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):951-960. PubMed ID: 26469339
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of insulin-like growth factor-I and platelet-rich plasma on sciatic nerve crush injury in a rat model.
    Emel E; Ergün SS; Kotan D; Gürsoy EB; Parman Y; Zengin A; Nurten A
    J Neurosurg; 2011 Feb; 114(2):522-8. PubMed ID: 21029038
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transplantation of bone-marrow-derived cells into a nerve guide resulted in transdifferentiation into Schwann cells and effective regeneration of transected mouse sciatic nerve.
    Pereira Lopes FR; Frattini F; Marques SA; Almeida FM; de Moura Campos LC; Langone F; Lora S; Borojevic R; Martinez AM
    Micron; 2010 Oct; 41(7):783-90. PubMed ID: 20728816
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thyroid hormone enhances transected axonal regeneration and muscle reinnervation following rat sciatic nerve injury.
    Panaite PA; Barakat-Walter I
    J Neurosci Res; 2010 Jun; 88(8):1751-63. PubMed ID: 20127814
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A rat model for assessing the long-term safety and performance of peripheral nerve electrode arrays.
    Shafer B; Welle C; Vasudevan S
    J Neurosci Methods; 2019 Dec; 328():108437. PubMed ID: 31526764
    [TBL] [Abstract][Full Text] [Related]  

  • 53.
    Shen J; Wang J; Liu X; Sun Y; Yin A; Chai Y; Zhang K; Wang C; Zheng X
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):50785-50801. PubMed ID: 34664947
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessments of regenerative potential of silymarin nanoparticles loaded into chitosan conduit on peripheral nerve regeneration: a transected sciatic nerve model in rat.
    Ebrahimi-Zadehlou P; Najafpour A; Mohammadi R
    Neurol Res; 2021 Feb; 43(2):148-156. PubMed ID: 33034534
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Porous nerve guidance conduits reinforced with braided composite structures of silk/magnesium filaments for peripheral nerve repair.
    Zhang S; Wang J; Zheng Z; Yan J; Zhang L; Li Y; Zhang J; Li G; Wang X; Kaplan D
    Acta Biomater; 2021 Oct; 134():116-130. PubMed ID: 34289421
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity.
    Chung T; Wang JQ; Wang J; Cao B; Li Y; Pang SW
    J Neural Eng; 2015 Oct; 12(5):056018. PubMed ID: 26394650
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Wireless microelectrode arrays for selective and chronically stable peripheral nerve stimulation for hindlimb movement.
    Frederick RA; Troyk PR; Cogan SF
    J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34592725
    [No Abstract]   [Full Text] [Related]  

  • 58. The geometric design of micromachined silicon sieve electrodes influences functional nerve regeneration.
    Wallman L; Zhang Y; Laurell T; Danielsen N
    Biomaterials; 2001 May; 22(10):1187-93. PubMed ID: 11352098
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo.
    Huang L; Zhu L; Shi X; Xia B; Liu Z; Zhu S; Yang Y; Ma T; Cheng P; Luo K; Huang J; Luo Z
    Acta Biomater; 2018 Mar; 68():223-236. PubMed ID: 29274478
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Immunohistochemical characterization of axonal sprouting and reactive tissue changes after long-term implantation of a polyimide sieve electrode to the transected adult rat sciatic nerve.
    Klinge PM; Vafa MA; Brinker T; Brandis A; Walter GF; Stieglitz T; Samii M; Wewetzer K
    Biomaterials; 2001 Sep; 22(17):2333-43. PubMed ID: 11511030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.