These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 39064395)

  • 1. Advances in Energy Harvesting Technologies for Wearable Devices.
    Kang M; Yeo WH
    Micromachines (Basel); 2024 Jul; 15(7):. PubMed ID: 39064395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid dual-function thermal energy harvesting and storage technologies: towards self-chargeable flexible/wearable devices.
    Teixeira JS; Costa RS; Pires AL; Pereira AM; Pereira C
    Dalton Trans; 2021 Jul; 50(29):9983-10013. PubMed ID: 34264261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward Wearable Self-Charging Power Systems: The Integration of Energy-Harvesting and Storage Devices.
    Pu X; Hu W; Wang ZL
    Small; 2018 Jan; 14(1):. PubMed ID: 29194960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harvesting Inertial Energy and Powering Wearable Devices: A Review.
    Zhang H; Shen Q; Zheng P; Wang H; Zou R; Zhang Z; Pan Y; Zhi JY; Xiang ZR
    Small Methods; 2024 Jan; 8(1):e2300771. PubMed ID: 37853661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-organic framework based self-powered devices for human body energy harvesting.
    Lu X; Chen Z; Chen G; Liu Z
    Chem Commun (Camb); 2024 Jul; 60(61):7843-7865. PubMed ID: 38967500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review of Recent Advances in Human-Motion Energy Harvesting Nanogenerators, Self-Powering Smart Sensors and Self-Charging Electronics.
    Gołąbek J; Strankowski M
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Potential of Electrospinning to Enable the Realization of Energy-Autonomous Wearable Sensing Systems.
    Dinuwan Gunawardhana KRS; Simorangkir RBVB; McGuinness GB; Rasel MS; Magre Colorado LA; Baberwal SS; Ward TE; O'Flynn B; Coyle SM
    ACS Nano; 2024 Jan; 18(4):2649-2684. PubMed ID: 38230863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully stretchable textile-based triboelectric nanogenerators with crepe-paper-induced surface microstructures.
    Kim DE; Shin S; Zhang G; Choi D; Jung J
    RSC Adv; 2023 Apr; 13(16):11142-11149. PubMed ID: 37056967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of biomemristors in next generation wearable electronics.
    Mao S; Sun B; Zhou G; Guo T; Wang J; Zhao Y
    Nanoscale Horiz; 2022 Jul; 7(8):822-848. PubMed ID: 35697026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Materials and Designs for Power Supply Systems in Skin-Interfaced Electronics.
    Li J; Zhao J; Rogers JA
    Acc Chem Res; 2019 Jan; 52(1):53-62. PubMed ID: 30525449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible thermoelectric generator and energy management electronics powered by body heat.
    Yang S; Li Y; Deng L; Tian S; Yao Y; Yang F; Feng C; Dai J; Wang P; Gao M
    Microsyst Nanoeng; 2023; 9():106. PubMed ID: 37636323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics.
    Meng X; Cai C; Luo B; Liu T; Shao Y; Wang S; Nie S
    Nanomicro Lett; 2023 May; 15(1):124. PubMed ID: 37166487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible/Stretchable Supercapacitors with Novel Functionality for Wearable Electronics.
    Keum K; Kim JW; Hong SY; Son JG; Lee SS; Ha JS
    Adv Mater; 2020 Dec; 32(51):e2002180. PubMed ID: 32930437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radio-frequency energy harvesting for wearable sensors.
    Borges LM; Chávez-Santiago R; Barroca N; Velez FJ; Balasingham I
    Healthc Technol Lett; 2015 Feb; 2(1):22-7. PubMed ID: 26609400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. WearETE: A Scalable Wearable E-Textile Triboelectric Energy Harvesting System for Human Motion Scavenging.
    Li X; Sun Y
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29149035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stretchable Sweat-Activated Battery in Skin-Integrated Electronics for Continuous Wireless Sweat Monitoring.
    Liu Y; Huang X; Zhou J; Yiu CK; Song Z; Huang W; Nejad SK; Li H; Wong TH; Yao K; Zhao L; Yoo W; Park W; Li J; Huang Y; Lam HR; Song E; Guo X; Wang Y; Dai Z; Chang L; Li WJ; Xie Z; Yu X
    Adv Sci (Weinh); 2022 Mar; 9(9):e2104635. PubMed ID: 35088587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging Devices Based on Two-Dimensional Monolayer Materials for Energy Harvesting.
    Fan FR; Wu W
    Research (Wash D C); 2019; 2019():7367828. PubMed ID: 31912044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perspectives on recent advancements in energy harvesting, sensing and bio-medical applications of piezoelectric gels.
    Vijayakanth T; Shankar S; Finkelstein-Zuta G; Rencus-Lazar S; Gilead S; Gazit E
    Chem Soc Rev; 2023 Aug; 52(17):6191-6220. PubMed ID: 37585216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in Functional Fiber-Based Wearable Triboelectric Nanogenerators.
    Kim H; Nguyen DC; Luu TT; Ding Z; Lin ZH; Choi D
    Nanomaterials (Basel); 2023 Oct; 13(19):. PubMed ID: 37836359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.
    Lou Z; Li L; Wang L; Shen G
    Small; 2017 Dec; 13(45):. PubMed ID: 29076297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.