These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 39064415)

  • 1. A Scalable, Wide-Angle Metasurface Array for Electromagnetic Energy Harvesting.
    Li W; Shen T; Zhang B; Wei Y
    Micromachines (Basel); 2024 Jul; 15(7):. PubMed ID: 39064415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scalable, Dual-Band Metasurface Array for Electromagnetic Energy Harvesting and Wireless Power Transfer.
    Wei Y; Duan J; Jing H; Yang H; Deng H; Song C; Wang J; Qu Z; Zhang B
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-Band, Wide-Angle, and High-Capture Efficiency Metasurface for Electromagnetic Energy Harvesting.
    Amer AAG; Othman N; Sapuan SZ; Alphones A; Hassan MF; Al-Gburi AJA; Zakaria Z
    Nanomaterials (Basel); 2023 Jul; 13(13):. PubMed ID: 37446531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-efficiency electromagnetic energy harvesting using double-elliptical metasurface resonators.
    Amer AAG; Othman N; Sapuan SZ; Alphones A; Salem AA
    PLoS One; 2023; 18(12):e0291354. PubMed ID: 38127949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pixelated Metasurface for Dual-Band and Multi-Polarization Electromagnetic Energy Harvesting.
    Ghaderi B; Nayyeri V; Soleimani M; Ramahi OM
    Sci Rep; 2018 Sep; 8(1):13227. PubMed ID: 30185809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of Schottky diode and optimal matching circuit design for low power RF energy harvesting.
    Reddaf A; Boudjerda M; Bouchachi I; Babes B; Elrashidi A; AboRas KM; Ali E; Ghoneim SSM; Elsisi M
    Heliyon; 2024 Mar; 10(6):e27792. PubMed ID: 38560670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Broad Dual-Band Implantable Antenna for RF Energy Harvesting and Data Transmitting.
    Fan Y; Liu X; Xu C
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of 2400-2450 MHz Frequency Band RF Energy Harvesting System for Low-Power Device Operation.
    Khan NU; Ullah S; Khan FU; Merla A
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A High-Performance Circularly Polarized and Harmonic Rejection Rectenna for Electromagnetic Energy Harvesting.
    Abdulwali ZSA; Alqahtani AH; Aladadi YT; Alkanhal MAS; Al-Moliki YM; Aljaloud K; Alresheedi MT
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiband Microstrip Rectenna Using ZnO-Based Planar Schottky Diode for RF Energy Harvesting Applications.
    Kayed SI; Elsheakh DN; Mohamed HA; Shawkey HA
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metamaterial-Integrated High-Gain Rectenna for RF Sensing and Energy Harvesting Applications.
    Lee W; Choi SI; Kim HI; Hwang S; Jeon S; Yoon YK
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Dual-Band Wide-Input-Range Adaptive CMOS RF-DC Converter for Ambient RF Energy Harvesting.
    Heo BR; Kwon I
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antenna array-based metasurface for multi-scenario wide-angle polarization-insensitive radar cross section reduction.
    Meng ZK; Shi Y
    Opt Express; 2024 Apr; 32(8):13014-13034. PubMed ID: 38859283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Fully-Integrated Ambient RF Energy Harvesting System with 423-μW Output Power.
    Pakkirisami Churchill KK; Ramiah H; Chong G; Chen Y; Mak PI; Martins RP
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Broadband RF Differential Rectifier Integrated with Archimedean Spiral Antenna for Wireless Energy Harvesting Applications.
    Mansour M; Le Polozec X; Kanaya H
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30764579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rectenna System Development Using Harmonic Balance and S-Parameters for an RF Energy Harvester.
    Md Jamil MNB; Omar M; Ibrahim R; Bingi K; Faqih M
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A New Compact Triple-Band Triangular Patch Antenna for RF Energy Harvesting Applications in IoT Devices.
    Benkalfate C; Ouslimani A; Kasbari AE; Feham M
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiband Ambient RF Energy Harvester with High Gain Wideband Circularly Polarized Antenna toward Self-Powered Wireless Sensors.
    Nguyen HQ; Le MT
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a Highly Efficient Wideband Multi-Frequency Ambient RF Energy Harvester.
    Roy S; Tiang JJ; Roslee MB; Ahmed MT; Kouzani AZ; Mahmud MAP
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of a Circularly Polarized Metasurface Antenna for Hybrid Wireless Applications.
    Behera BR; Alsharif MH; Jahid A
    Micromachines (Basel); 2023 Nov; 14(12):. PubMed ID: 38138341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.