These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 39064419)

  • 1. Upscaled Production of Satellite-Free Droplets: Step Emulsification with Deterministic Lateral Displacement.
    Ji G; Masui S; Kanno Y; Nisisako T
    Micromachines (Basel); 2024 Jul; 15(7):. PubMed ID: 39064419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Coupling of Step Emulsification and Deterministic Lateral Displacement for Producing Satellite-Free Droplets and Particles.
    Ji G; Kanno Y; Nisisako T
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printing of monolithic gravity-assisted step-emulsification device for scalable production of high viscosity emulsion droplets.
    Hwang YH; Lee JH; Um T; Lee H
    Lab Chip; 2024 Oct; 24(20):4778-4785. PubMed ID: 39324255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuna-step: tunable parallelized step emulsification for the generation of droplets with dynamic volume control to 3D print functionally graded porous materials.
    Nalin F; Tirelli MC; Garstecki P; Postek W; Costantini M
    Lab Chip; 2023 Dec; 24(1):113-126. PubMed ID: 38047296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grooved step emulsification systems optimize the throughput of passive generation of monodisperse emulsions.
    Opalski AS; Makuch K; Lai YK; Derzsi L; Garstecki P
    Lab Chip; 2019 Mar; 19(7):1183-1192. PubMed ID: 30843018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles.
    Nisisako T; Torii T
    Lab Chip; 2008 Feb; 8(2):287-93. PubMed ID: 18231668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Throughput enhancement of parallel step emulsifier devices by shear-free and efficient nozzle clearance.
    Stolovicki E; Ziblat R; Weitz DA
    Lab Chip; 2017 Dec; 18(1):132-138. PubMed ID: 29168873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation and Elimination of Satellite Droplets during Monodisperse Droplet Generation by Using Piezoelectric Method.
    Hu Z; Li S; Yang F; Lin X; Pan S; Huang X; Xu J
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas-assisted microfluidic step-emulsification for generating micron- and submicron-sized droplets.
    Huang B; Ge X; Rubinstein BY; Chen X; Wang L; Xie H; Leshansky AM; Li Z
    Microsyst Nanoeng; 2023; 9():86. PubMed ID: 37435566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High aspect ratio induced spontaneous generation of monodisperse picolitre droplets for digital PCR.
    Xu X; Yuan H; Song R; Yu M; Chung HY; Hou Y; Shang Y; Zhou H; Yao S
    Biomicrofluidics; 2018 Jan; 12(1):014103. PubMed ID: 29333205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic step-emulsification in axisymmetric geometry.
    Chakraborty I; Ricouvier J; Yazhgur P; Tabeling P; Leshansky AM
    Lab Chip; 2017 Oct; 17(21):3609-3620. PubMed ID: 28944810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of uniform monomer droplets using packed column and continuous polymerization in tube reactor.
    Yasuda M; Goda T; Ogino H; Glomm WR; Takayanagi H
    J Colloid Interface Sci; 2010 Sep; 349(1):392-401. PubMed ID: 20566203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of complex samples: Implementation of a modular and reconfigurable droplet-based microfluidic platform with cascaded deterministic lateral displacement separation modules.
    Pariset E; Pudda C; Boizot F; Verplanck N; Revol-Cavalier F; Berthier J; Thuaire A; Agache V
    PLoS One; 2018; 13(5):e0197629. PubMed ID: 29768490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Centrifugal Step Emulsification: How Buoyancy Enables High Generation Rates of Monodisperse Droplets.
    Schulz M; von Stetten F; Zengerle R; Paust N
    Langmuir; 2019 Jul; 35(30):9809-9815. PubMed ID: 31283246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A passive microfluidic system based on step emulsification allows the generation of libraries of nanoliter-sized droplets from microliter droplets of varying and known concentrations of a sample.
    Postek W; Kaminski TS; Garstecki P
    Lab Chip; 2017 Mar; 17(7):1323-1331. PubMed ID: 28271118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces.
    Nisisako T; Ando T; Hatsuzawa T
    Lab Chip; 2012 Sep; 12(18):3426-35. PubMed ID: 22806835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Droplet size based separation by deterministic lateral displacement-separating droplets by cell--induced shrinking.
    Joensson HN; Uhlén M; Svahn HA
    Lab Chip; 2011 Apr; 11(7):1305-10. PubMed ID: 21321749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of critical particle size in asymmetrical deterministic lateral displacement.
    Rezaei B; Moghimi Zand M; Javidi R
    J Chromatogr A; 2021 Jul; 1649():462216. PubMed ID: 34034107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scalable Production of Monodisperse Functional Microspheres by Multilayer Parallelization of High Aspect Ratio Microfluidic Channels.
    Chung CHY; Cui B; Song R; Liu X; Xu X; Yao S
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31509956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system.
    Tan YC; Lee AP
    Lab Chip; 2005 Oct; 5(10):1178-83. PubMed ID: 16175277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.