These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 39064443)

  • 1. Zweifach-Fung Microfluidic Device for Efficient Microparticle Separation: Cost-Effective Fabrication Using CO
    Rodríguez CF; Báez-Suárez M; Muñoz-Camargo C; Reyes LH; Osma JF; Cruz JC
    Micromachines (Basel); 2024 Jul; 15(7):. PubMed ID: 39064443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-cost inertial microfluidic device for microparticle separation: A laser-Ablated PMMA lab-on-a-chip approach without a cleanroom.
    Rodríguez CF; Guzmán-Sastoque P; Gantiva-Diaz M; Gómez SC; Quezada V; Muñoz-Camargo C; Osma JF; Reyes LH; Cruz JC
    HardwareX; 2023 Dec; 16():e00493. PubMed ID: 38045919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing Magnetic Micro- and Nanoparticle Separation with a Cost-Effective Microfluidic Device Fabricated by Laser Ablation of PMMA.
    Rodríguez CF; Guzmán-Sastoque P; Muñoz-Camargo C; Reyes LH; Osma JF; Cruz JC
    Micromachines (Basel); 2024 Aug; 15(8):. PubMed ID: 39203709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CO
    Nasser GA; Fath El-Bab AMR; Abdel-Mawgood AL; Mohamed H; Saleh AM
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31600884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Spiral Low-Cost Microchannel with Trapezoidal Cross Section for Cell Separation Using a Grayscale Approach.
    Adel M; Allam A; Sayour AE; Ragai HF; Umezu S; Fath El-Bab AMR
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-low-cost fabrication of polymer-based microfluidic devices with diode laser ablation.
    Gao K; Liu J; Fan Y; Zhang Y
    Biomed Microdevices; 2019 Aug; 21(4):83. PubMed ID: 31418064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a microfluidic device for cell concentration and blood cell-plasma separation.
    Maria MS; Kumar BS; Chandra TS; Sen AK
    Biomed Microdevices; 2015 Dec; 17(6):115. PubMed ID: 26564448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-Sided Tape in Microfluidics: A Cost-Effective Method in Device Fabrication.
    Smith S; Sypabekova M; Kim S
    Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amalgamation of diverse hydrodynamic effects with novel triple-sided membrane valves for developing a microfluidic device for filterless and continuous water purification.
    Prabhakar A; Jaiswar A; Mishra N; Kumar P; Dhwaj A; Nayak P; Verma D
    RSC Adv; 2021 Aug; 11(46):28723-28734. PubMed ID: 35478548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomedical microfluidic devices by using low-cost fabrication techniques: A review.
    Faustino V; Catarino SO; Lima R; Minas G
    J Biomech; 2016 Jul; 49(11):2280-2292. PubMed ID: 26671220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and experimental investigation of a novel spiral microfluidic chip to separate wide size range of micro-particles aimed at cell separation.
    Tabatabaei SA; Zabetian Targhi M
    Proc Inst Mech Eng H; 2021 Nov; 235(11):1315-1328. PubMed ID: 34218740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Fabrication of Microfluidic Chips for 3D Hydrodynamic Focusing and Wet Spinning of Polymeric Fibers.
    Gursoy A; Iranshahi K; Wei K; Tello A; Armagan E; Boesel LF; Sorin F; Rossi RM; Defraeye T; Toncelli C
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32164361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel microfluidic chip-based sperm-sorting device constructed using design of experiment method.
    Phiphattanaphiphop C; Leksakul K; Phatthanakun R; Khamlor T
    Sci Rep; 2020 Oct; 10(1):17143. PubMed ID: 33051512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO
    Yao Y; Fan Y
    Biomed Microdevices; 2021 Sep; 23(4):47. PubMed ID: 34550472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic-inertial separation of microparticle in a gradually contracted microchannel.
    Tian ZZ; Gan CS; Fan LL; Wang JC; Zhao L
    Electrophoresis; 2022 Nov; 43(21-22):2217-2226. PubMed ID: 36084168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mask-Free Laser Lithography for Rapid and Low-Cost Microfluidic Device Fabrication.
    Trantidou T; Friddin MS; Gan KB; Han L; Bolognesi G; Brooks NJ; Ces O
    Anal Chem; 2018 Dec; 90(23):13915-13921. PubMed ID: 30395442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A magnetically controlled microfluidic device for concentration dependent
    Yadav VK; Ganguly P; Mishra P; Das S; Mallick D
    Lab Chip; 2023 Sep; 23(19):4352-4365. PubMed ID: 37712390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood plasma separation in elevated dimension T-shaped microchannel.
    Tripathi S; Prabhakar A; Kumar N; Singh SG; Agrawal A
    Biomed Microdevices; 2013 Jun; 15(3):415-25. PubMed ID: 23355067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft tubular microfluidics for 2D and 3D applications.
    Xi W; Kong F; Yeo JC; Yu L; Sonam S; Dao M; Gong X; Lim CT
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10590-10595. PubMed ID: 28923968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.