These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 39064485)
1. Evaluation of Selected Biometric Parameters in Cataract Patients-A Comparison between Argos Porwolik M; Porwolik A; Mrukwa-Kominek E Medicina (Kaunas); 2024 Jun; 60(7):. PubMed ID: 39064485 [No Abstract] [Full Text] [Related]
2. Comparison of two swept-source optical coherence tomography biometers and a partial coherence interferometer. Yang CM; Lim DH; Kim HJ; Chung TY PLoS One; 2019; 14(10):e0223114. PubMed ID: 31603903 [TBL] [Abstract][Full Text] [Related]
3. Comparison of ocular biometric measurements in patients with cataract using three swept-source optical coherence tomography devices. Oh R; Oh JY; Choi HJ; Kim MK; Yoon CH BMC Ophthalmol; 2021 Jan; 21(1):62. PubMed ID: 33504333 [TBL] [Abstract][Full Text] [Related]
4. Comparison of Ocular Biometry Using New Swept-source Optical Coherence Tomography-based Optical Biometer with Other Devices. Cho YJ; Lim TH; Choi KY; Cho BJ Korean J Ophthalmol; 2018 Aug; 32(4):257-264. PubMed ID: 30091303 [TBL] [Abstract][Full Text] [Related]
5. Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers. Grulkowski I; Liu JJ; Zhang JY; Potsaid B; Jayaraman V; Cable AE; Duker JS; Fujimoto JG Ophthalmology; 2013 Nov; 120(11):2184-90. PubMed ID: 23755873 [TBL] [Abstract][Full Text] [Related]
6. Comparison of measurements and calculated lens power using three biometers: a Scheimpflug tomographer with partial coherence interferometry and two swept source optical coherence tomographers. Ang RET; Estolano BL; Luz PHC; Umali MIN; Araneta MMQ; Cruz EM BMC Ophthalmol; 2024 Sep; 24(1):410. PubMed ID: 39300358 [TBL] [Abstract][Full Text] [Related]
7. Comparison of refractive outcomes obtained with two swept-source OCT-based optical biometers after cataract surgery: A study of 152 eyes. Agard E; Levron A; Billant J; Douma I; Dot C J Fr Ophtalmol; 2024 Jun; 47(6):104186. PubMed ID: 38663226 [TBL] [Abstract][Full Text] [Related]
8. Efficiency and measurements agreement between swept-source OCT and low-coherence interferometry biometry systems. Calvo-Sanz JA; Portero-Benito A; Arias-Puente A Graefes Arch Clin Exp Ophthalmol; 2018 Mar; 256(3):559-566. PubMed ID: 29392397 [TBL] [Abstract][Full Text] [Related]
9. Ocular biometry and refractive outcomes using two swept-source optical coherence tomography-based biometers with segmental or equivalent refractive indices. Omoto MK; Torii H; Masui S; Ayaki M; Tsubota K; Negishi K Sci Rep; 2019 Apr; 9(1):6557. PubMed ID: 31024017 [TBL] [Abstract][Full Text] [Related]
10. Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry. Kunert KS; Peter M; Blum M; Haigis W; Sekundo W; Schütze J; Büehren T J Cataract Refract Surg; 2016 Jan; 42(1):76-83. PubMed ID: 26948781 [TBL] [Abstract][Full Text] [Related]
11. Clinical Evaluation of a New Swept-Source Optical Coherence Biometer That Uses Individual Refractive Indices to Measure Axial Length in Cataract Patients. Tamaoki A; Kojima T; Hasegawa A; Yamamoto M; Kaga T; Tanaka K; Ichikawa K Ophthalmic Res; 2019; 62(1):11-23. PubMed ID: 30889604 [TBL] [Abstract][Full Text] [Related]
12. Comprehensive Comparison of Axial Length Measurement With Three Swept-Source OCT-Based Biometers and Partial Coherence Interferometry. Huang J; Chen H; Li Y; Chen Z; Gao R; Yu J; Zhao Y; Lu W; McAlinden C; Wang Q J Refract Surg; 2019 Feb; 35(2):115-120. PubMed ID: 30742226 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the ocular ultrasonic and optical biometry devices in the different quality measurements. Khorrami-Nejad M; Khodair AM; Khodaparast M; Babapour Mofrad F; Dehghanian Nasrabadi F J Optom; 2023; 16(4):284-295. PubMed ID: 37567838 [TBL] [Abstract][Full Text] [Related]
14. Repeatability of new optical biometer and agreement with 2 validated optical biometers, all based on SS-OCT. Galzignato A; Lupardi E; Hoffer KJ; Barboni P; Schiano-Lomoriello D; Savini G J Cataract Refract Surg; 2023 Jan; 49(1):5-10. PubMed ID: 36026703 [TBL] [Abstract][Full Text] [Related]
15. Agreement and clinical comparison between a new swept-source optical coherence tomography-based optical biometer and an optical low-coherence reflectometry biometer. Arriola-Villalobos P; Almendral-Gómez J; Garzón N; Ruiz-Medrano J; Fernández-Pérez C; Martínez-de-la-Casa JM; Díaz-Valle D Eye (Lond); 2017 Mar; 31(3):437-442. PubMed ID: 27834962 [TBL] [Abstract][Full Text] [Related]
16. Biometry measurements using a new large-coherence-length swept-source optical coherence tomographer. Shammas HJ; Ortiz S; Shammas MC; Kim SH; Chong C J Cataract Refract Surg; 2016 Jan; 42(1):50-61. PubMed ID: 26948778 [TBL] [Abstract][Full Text] [Related]
17. COMPARISON OF OPTICAL BIOMETERS ARGOS AND IOL MASTER 700. Románek J; Sluková K Cesk Slov Oftalmol; 2021; 77(6):295-299. PubMed ID: 35081719 [TBL] [Abstract][Full Text] [Related]
18. Assessing the Validity of Measurements of Swept-source and Partial Coherence Interferometry Devices in Cataract Patients. Ghaffari R; Mahmoudzadeh R; Mohammadi SS; Salabati M; Latifi G; Ghassemi H Optom Vis Sci; 2019 Oct; 96(10):745-750. PubMed ID: 31592957 [TBL] [Abstract][Full Text] [Related]