These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 39064918)
21. Research on the facile regeneration of degraded cathode materials from spent LiNi Yang C; Hao Y; Wang J; Zhang M; Song L; Qu J Front Chem; 2024; 12():1400758. PubMed ID: 38746018 [TBL] [Abstract][Full Text] [Related]
22. Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries. Bi H; Zhu H; Zu L; Gao Y; Gao S; Bai Y Waste Manag Res; 2020 Aug; 38(8):911-920. PubMed ID: 32552572 [TBL] [Abstract][Full Text] [Related]
23. Comprehensive Technology for Recycling and Regenerating Materials from Spent Lithium Iron Phosphate Battery. Lei S; Sun W; Yang Y Environ Sci Technol; 2024 Feb; 58(8):3609-3628. PubMed ID: 38329241 [TBL] [Abstract][Full Text] [Related]
24. Direct Regenerating Cathode Materials from Spent Lithium-Ion Batteries. Lan Y; Li X; Zhou G; Yao W; Cheng HM; Tang Y Adv Sci (Weinh); 2024 Jan; 11(1):e2304425. PubMed ID: 37955914 [TBL] [Abstract][Full Text] [Related]
25. Construction of a Preoxidation and Cation Doping Regeneration Strategy to Improve Rate Performance Recycling Spent LiFePO Li X; Ge M; Zhou Q; Gao Z; Cui Y; Zhang M; Tang X; Zhang H; Shi Z; Yin Y; Yang S Langmuir; 2023 Sep; 39(37):13132-13139. PubMed ID: 37656965 [TBL] [Abstract][Full Text] [Related]
26. Acid-free mechanochemical process to enhance the selective recycling of spent LiFePO Zhang Q; Fan E; Lin J; Sun S; Zhang X; Chen R; Wu F; Li L J Hazard Mater; 2023 Feb; 443(Pt A):130160. PubMed ID: 36283216 [TBL] [Abstract][Full Text] [Related]
27. Regenerated Ni-Doped LiCoO Zheng Z; Xie D; Liu X; Huang H; Zhang M; Cheng F ACS Appl Mater Interfaces; 2024 Jun; 16(24):31137-31144. PubMed ID: 38856774 [TBL] [Abstract][Full Text] [Related]
28. Life Cycle of LiFePO Rostami H; Valio J; Tynjälä P; Lassi U; Suominen P Chemphyschem; 2024 Dec; 25(24):e202400459. PubMed ID: 39264359 [TBL] [Abstract][Full Text] [Related]
29. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries. Bi H; Zhu H; Zu L; Gao Y; Gao S; Wu Z Waste Manag Res; 2019 Dec; 37(12):1217-1228. PubMed ID: 31486742 [TBL] [Abstract][Full Text] [Related]
30. Enhancement of Electrochemical Performance of LiFePO Yi D; Cui X; Li N; Zhang L; Yang D ACS Omega; 2020 May; 5(17):9752-9758. PubMed ID: 32391462 [TBL] [Abstract][Full Text] [Related]
31. Recycling of Spent Lithium Iron Phosphate Cathodes: Challenges and Progress. Yao H; Zhang Y; Yang G; Fu L; Li Y; Zhou L; Geng S; Xiang Y; Seh ZW ACS Appl Mater Interfaces; 2024 Dec; 16(49):67087-67105. PubMed ID: 39282747 [TBL] [Abstract][Full Text] [Related]
32. The auto-oxidative relithiation of spent cathode materials at low temperature environment for efficient and sustainable regeneration. Fei Z; Zhang Y; Meng Q; Dong P; Li Y; Fei J; Qi H; Yan J J Hazard Mater; 2022 Jun; 432():128664. PubMed ID: 35305413 [TBL] [Abstract][Full Text] [Related]
33. Boron and Nitrogen Codoped Carbon Layers of LiFePO4 Improve the High-Rate Electrochemical Performance for Lithium Ion Batteries. Zhang J; Nie N; Liu Y; Wang J; Yu F; Gu J; Li W ACS Appl Mater Interfaces; 2015 Sep; 7(36):20134-43. PubMed ID: 26305802 [TBL] [Abstract][Full Text] [Related]
34. Toward the efficient direct regeneration of spent cathode materials through the effect of residual sodium ions analysis. Jiang G; Liu L; Zhu B; Zhang Y; Meng Q; Zhang Y; Dong P; Ouyang Q; Zhu Z J Environ Manage; 2023 Jan; 326(Pt A):116661. PubMed ID: 36372038 [TBL] [Abstract][Full Text] [Related]
35. A facile route to modify ferrous phosphate and its use as an iron-containing resource for LiFePO4 via a polyol process. Li S; Liu X; Mi R; Liu H; Li Y; Lau WM; Mei J ACS Appl Mater Interfaces; 2014 Jun; 6(12):9449-57. PubMed ID: 24858212 [TBL] [Abstract][Full Text] [Related]
36. A sustainable closed-loop method of selective oxidation leaching and regeneration for lithium iron phosphate cathode materials from spent batteries. Gong R; Li C; Meng Q; Dong P; Zhang Y; Zhang B; Yan J; Li Y J Environ Manage; 2022 Oct; 319():115740. PubMed ID: 35868192 [TBL] [Abstract][Full Text] [Related]
37. Amino Group-Aided Efficient Regeneration Targeting Structural Defects and Inactive FePO Liu Y; Tu W; Bai J; Wang P; Mao Y; Xiao K; Wang S; Qiu S; Zhu X; Lu W; Zhao B; Sun Y Small; 2024 Dec; 20(49):e2405362. PubMed ID: 39263784 [TBL] [Abstract][Full Text] [Related]
38. Electrochemical selective lithium extraction and regeneration of spent lithium iron phosphate. Qin Z; Li X; Shen X; Cheng Y; Wu F; Li Y; He Z Waste Manag; 2024 Feb; 174():106-113. PubMed ID: 38041979 [TBL] [Abstract][Full Text] [Related]
39. Ferrioxalate photolysis-assisted green recovery of valuable resources from spent lithium iron phosphate batteries. Hua Y; Zhang Z Waste Manag; 2024 Jun; 183():199-208. PubMed ID: 38761484 [TBL] [Abstract][Full Text] [Related]
40. A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi Fan X; Tan C; Li Y; Chen Z; Li Y; Huang Y; Pan Q; Zheng F; Wang H; Li Q J Hazard Mater; 2021 May; 410():124610. PubMed ID: 33243647 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]