These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 39065254)
1. Microbial Electrolysis Cells Based on a Bacterial Anode Encapsulated with a Dialysis Bag Including Graphite Particles. Dubrovin IA; Hirsch LO; Chiliveru A; Jukanti A; Rozenfeld S; Schechter A; Cahan R Microorganisms; 2024 Jul; 12(7):. PubMed ID: 39065254 [TBL] [Abstract][Full Text] [Related]
2. Hydrogen Production in Microbial Electrolysis Cells Based on Bacterial Anodes Encapsulated in a Small Bioreactor Platform. Amar Dubrovin I; Ouaknin Hirsch L; Rozenfeld S; Gandu B; Menashe O; Schechter A; Cahan R Microorganisms; 2022 May; 10(5):. PubMed ID: 35630450 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen Production in Microbial Electrolysis Cells Using an Alginate Hydrogel Bioanode Encapsulated with a Filter Bag. Hirsch LO; Gandu B; Chiliveru A; Dubrovin IA; Jukanti A; Schechter A; Cahan R Polymers (Basel); 2024 Jul; 16(14):. PubMed ID: 39065313 [TBL] [Abstract][Full Text] [Related]
4. The Performance of a Modified Anode Using a Combination of Kaolin and Graphite Nanoparticles in Microbial Fuel Cells. Hirsch LO; Gandu B; Chiliveru A; Amar Dubrovin I; Rozenfeld S; Schechter A; Cahan R Microorganisms; 2024 Mar; 12(3):. PubMed ID: 38543655 [TBL] [Abstract][Full Text] [Related]
5. Shift of biofilm and suspended bacterial communities with changes in anode potential in a microbial electrolysis cell treating primary sludge. Zakaria BS; Lin L; Dhar BR Sci Total Environ; 2019 Nov; 689():691-699. PubMed ID: 31280150 [TBL] [Abstract][Full Text] [Related]
6. Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells. Liu Q; Ren ZJ; Huang C; Liu B; Ren N; Xing D Biotechnol Biofuels; 2016; 9():162. PubMed ID: 27489567 [TBL] [Abstract][Full Text] [Related]
7. Anode amendment with kaolin and activated carbon increases electricity generation in a microbial fuel cell. Hirsch LO; Dubrovin IA; Gandu B; Emanuel E; Kjellerup BV; Ugur GE; Schechter A; Cahan R Bioelectrochemistry; 2023 Oct; 153():108486. PubMed ID: 37302334 [TBL] [Abstract][Full Text] [Related]
8. Community analysis of biofilms on flame-oxidized stainless steel anodes in microbial fuel cells fed with different substrates. Eyiuche NJ; Asakawa S; Yamashita T; Ikeguchi A; Kitamura Y; Yokoyama H BMC Microbiol; 2017 Jun; 17(1):145. PubMed ID: 28662640 [TBL] [Abstract][Full Text] [Related]
9. Enhancing bioelectrochemical hydrogen production from industrial wastewater using Ni-foam cathodes in a microbial electrolysis cell pilot plant. Guerrero-Sodric O; Baeza JA; Guisasola A Water Res; 2024 Jun; 256():121616. PubMed ID: 38657305 [TBL] [Abstract][Full Text] [Related]
10. Effects of ammonia on electrochemical active biofilm in microbial electrolysis cells for synthetic swine wastewater treatment. Wang N; Feng Y; Li Y; Zhang L; Liu J; Li N; He W Water Res; 2022 Jul; 219():118570. PubMed ID: 35597221 [TBL] [Abstract][Full Text] [Related]
11. Identification of biofilm formation and exoelectrogenic population structure and function with graphene/polyanliline modified anode in microbial fuel cell. Lin XQ; Li ZL; Liang B; Nan J; Wang AJ Chemosphere; 2019 Mar; 219():358-364. PubMed ID: 30551102 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen production by geobacter species and a mixed consortium in a microbial electrolysis cell. Call DF; Wagner RC; Logan BE Appl Environ Microbiol; 2009 Dec; 75(24):7579-87. PubMed ID: 19820150 [TBL] [Abstract][Full Text] [Related]
13. A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells. Call DF; Logan BE Biosens Bioelectron; 2011 Jul; 26(11):4526-31. PubMed ID: 21652198 [TBL] [Abstract][Full Text] [Related]
14. Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell. Lee HS; Rittmann BE Environ Sci Technol; 2010 Feb; 44(3):948-54. PubMed ID: 20030379 [TBL] [Abstract][Full Text] [Related]
15. Competition of two highly specialized and efficient acetoclastic electroactive bacteria for acetate in biofilm anode of microbial electrolysis cell. Sapireddy V; Katuri KP; Muhammad A; Saikaly PE NPJ Biofilms Microbiomes; 2021 May; 7(1):47. PubMed ID: 34059681 [TBL] [Abstract][Full Text] [Related]
16. Tailoring a highly conductive and super-hydrophilic electrode for biocatalytic performance of microbial electrolysis cells. Park SG; Rhee C; Jadhav DA; Eisa T; Al-Mayyahi RB; Shin SG; Abdelkareem MA; Chae KJ Sci Total Environ; 2023 Jan; 856(Pt 1):159105. PubMed ID: 36181811 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of hydrogen production in a single chamber microbial electrolysis cell through anode arrangement optimization. Liang DW; Peng SK; Lu SF; Liu YY; Lan F; Xiang Y Bioresour Technol; 2011 Dec; 102(23):10881-5. PubMed ID: 21974881 [TBL] [Abstract][Full Text] [Related]
18. Rapid degradation of 2,4-dichloronitrobenzene in single-chamber microbial electrolysis cell with pre-acclimated bioanode: A comprehensive assessment. Liu Y; Wang C; Zhang K; Zhou Y; Xu Y; Xu X; Zhu L Sci Total Environ; 2020 Jul; 724():138053. PubMed ID: 32247974 [TBL] [Abstract][Full Text] [Related]
19. Phenol-degrading anode biofilm with high coulombic efficiency in graphite electrodes microbial fuel cell. Zhang D; Li Z; Zhang C; Zhou X; Xiao Z; Awata T; Katayama A J Biosci Bioeng; 2017 Mar; 123(3):364-369. PubMed ID: 27979700 [TBL] [Abstract][Full Text] [Related]
20. Evaluating the performance of coupled MFC-MEC with graphite felt/MWCNTs polyscale electrode in landfill leachate treatment, and bioelectricity and biogas production. Mansoorian HJ; Mahvi A; Nabizadeh R; Alimohammadi M; Nazmara S; Yaghmaeian K J Environ Health Sci Eng; 2020 Dec; 18(2):1067-1082. PubMed ID: 33312625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]