These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 39065902)
1. Explainable Deep-Learning-Based Gait Analysis of Hip-Knee Cyclogram for the Prediction of Adolescent Idiopathic Scoliosis Progression. Kim YG; Kim S; Park JH; Yang S; Jang M; Yun YJ; Cho JS; You S; Jang SH Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065902 [TBL] [Abstract][Full Text] [Related]
2. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units. Su B; Smith C; Gutierrez Farewik E Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277 [TBL] [Abstract][Full Text] [Related]
3. A deep convolutional neural network to predict the curve progression of adolescent idiopathic scoliosis: a pilot study. Yahara Y; Tamura M; Seki S; Kondo Y; Makino H; Watanabe K; Kamei K; Futakawa H; Kawaguchi Y BMC Musculoskelet Disord; 2022 Jun; 23(1):610. PubMed ID: 35751051 [TBL] [Abstract][Full Text] [Related]
4. Towards an Inertial Sensor-Based Wearable Feedback System for Patients after Total Hip Arthroplasty: Validity and Applicability for Gait Classification with Gait Kinematics-Based Features. Teufl W; Taetz B; Miezal M; Lorenz M; Pietschmann J; Jöllenbeck T; Fröhlich M; Bleser G Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31744141 [TBL] [Abstract][Full Text] [Related]
5. Machine Learning Based Abnormal Gait Classification with IMU Considering Joint Impairment. Hwang S; Kim J; Yang S; Moon HJ; Cho KH; Youn I; Sung JK; Han S Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275482 [TBL] [Abstract][Full Text] [Related]
6. A preliminary study in classification of the severity of spine deformation in adolescents with lumbar/thoracolumbar idiopathic scoliosis using machine learning algorithms based on lumbosacral joint efforts during gait. Samadi B; Raison M; Mahaudens P; Detrembleur C; Achiche S Comput Methods Biomech Biomed Engin; 2023 Sep; 26(11):1341-1352. PubMed ID: 36093771 [TBL] [Abstract][Full Text] [Related]
7. Analysis of Gait Characteristics Using Hip-Knee Cyclograms in Patients with Hemiplegic Stroke. Lee HS; Ryu H; Lee SU; Cho JS; You S; Park JH; Jang SH Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833761 [TBL] [Abstract][Full Text] [Related]
8. Digital wearable insole-based identification of knee arthropathies and gait signatures using machine learning. Wipperman MF; Lin AZ; Gayvert KM; Lahner B; Somersan-Karakaya S; Wu X; Im J; Lee M; Koyani B; Setliff I; Thakur M; Duan D; Breazna A; Wang F; Lim WK; Halasz G; Urbanek J; Patel Y; Atwal GS; Hamilton JD; Stuart S; Levy O; Avbersek A; Alaj R; Hamon SC; Harari O Elife; 2024 Apr; 13():. PubMed ID: 38686919 [TBL] [Abstract][Full Text] [Related]
9. Effects of knee osteoarthritis severity on inter-joint coordination and gait variability as measured by hip-knee cyclograms. Park JH; Lee H; Cho JS; Kim I; Lee J; Jang SH Sci Rep; 2021 Jan; 11(1):1789. PubMed ID: 33469057 [TBL] [Abstract][Full Text] [Related]
10. Effect of long-term orthotic treatment on gait biomechanics in adolescent idiopathic scoliosis. Mahaudens P; Raison M; Banse X; Mousny M; Detrembleur C Spine J; 2014 Aug; 14(8):1510-9. PubMed ID: 24314903 [TBL] [Abstract][Full Text] [Related]
11. Inter-joint coordination during gait in people with multiple sclerosis: A focus on the effect of disability. Pau M; Leban B; Massa D; Porta M; Frau J; Coghe G; Cocco E Mult Scler Relat Disord; 2022 Apr; 60():103741. PubMed ID: 35305428 [TBL] [Abstract][Full Text] [Related]
12. Deep Learning for Fall Risk Assessment With Inertial Sensors: Utilizing Domain Knowledge in Spatio-Temporal Gait Parameters. Tunca C; Salur G; Ersoy C IEEE J Biomed Health Inform; 2020 Jul; 24(7):1994-2005. PubMed ID: 31831454 [TBL] [Abstract][Full Text] [Related]
13. Analysis of Interrelationships among Voluntary and Prosthetic Leg Joint Parameters Using Cyclograms. Jasni F; Hamzaid NA; Mohd Syah NE; Chung TY; Abu Osman NA Front Neurosci; 2017; 11():230. PubMed ID: 28487630 [TBL] [Abstract][Full Text] [Related]
14. The Use of Synthetic IMU Signals in the Training of Deep Learning Models Significantly Improves the Accuracy of Joint Kinematic Predictions. Sharifi Renani M; Eustace AM; Myers CA; Clary CW Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502766 [TBL] [Abstract][Full Text] [Related]
15. Machine Learning based Human Gait Segmentation with Wearable Sensor Platform. Potluri S; Chandran AB; Diedrich C; Schega L Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():588-594. PubMed ID: 31945967 [TBL] [Abstract][Full Text] [Related]
16. Lower Body Kinematics Monitoring in Running Using Fabric-Based Wearable Sensors and Deep Convolutional Neural Networks. Gholami M; Rezaei A; Cuthbert TJ; Napier C; Menon C Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31816931 [TBL] [Abstract][Full Text] [Related]
17. BioMAT: An Open-Source Biomechanics Multi-Activity Transformer for Joint Kinematic Predictions Using Wearable Sensors. Sharifi-Renani M; Mahoor MH; Clary CW Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447628 [TBL] [Abstract][Full Text] [Related]
19. A novel measurement approach to dynamic change of limb length discrepancy using deep learning and wearable sensors. Wu J; Shi Y; Wu X Sci Prog; 2024; 107(1):368504241236345. PubMed ID: 38490169 [TBL] [Abstract][Full Text] [Related]
20. IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion. Dehzangi O; Taherisadr M; ChangalVala R Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186887 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]