These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 39065976)

  • 1. Research and Implementation of Indoor Positioning Algorithm Based on Bluetooth 5.1 AOA and AOD.
    Xiao K; Hao F; Zhang W; Li N; Wang Y
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A self-learning mean optimization filter to improve bluetooth 5.1 AoA indoor positioning accuracy for ship environments.
    Lin Q; Son J; Shin H
    J King Saud Univ Comput Inf Sci; 2023 Mar; 35(3):59-73. PubMed ID: 37520023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bluetooth 5.1: An Analysis of Direction Finding Capability for High-Precision Location Services.
    Pau G; Arena F; Gebremariam YE; You I
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34064147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indoor Multipath Assisted Angle of Arrival Localization.
    Wielandt S; Strycker L
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29099055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy Bounds for Array-Based Positioning in Dense Multipath Channels.
    Wilding T; Grebien S; Mühlmann U; Witrisal K
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30513978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Hybrid Method to Improve the BLE-Based Indoor Positioning in a Dense Bluetooth Environment.
    Huang K; He K; Du X
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An IMU-Aided Body-Shadowing Error Compensation Method for Indoor Bluetooth Positioning.
    Deng Z; Fu X; Wang H
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29361718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indoor Positioning Algorithm Based on the Improved RSSI Distance Model.
    Li G; Geng E; Ye Z; Xu Y; Lin J; Pang Y
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30150521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ES-DPR: A DOA-Based Method for Passive Localization in Indoor Environments.
    Chen Z; Wang J
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31151283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An RFID Indoor Positioning Algorithm Based on Bayesian Probability and K-Nearest Neighbor.
    Xu H; Ding Y; Li P; Wang R; Li Y
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28783073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Empirical Study of the Transmission Power Setting for Bluetooth-Based Indoor Localization Mechanisms.
    Castillo-Cara M; Lovón-Melgarejo J; Bravo-Rocca G; Orozco-Barbosa L; García-Varea I
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28590413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bluetooth Low Energy Indoor Positioning System with Channel Diversity, Weighted Trilateration and Kalman Filtering.
    Cantón Paterna V; Calveras Augé A; Paradells Aspas J; Pérez Bullones MA
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29258195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive Kalman filter for indoor localization using Bluetooth Low Energy and inertial measurement unit.
    Yoon PK; Zihajehzadeh S; Bong-Soo Kang ; Park EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():825-8. PubMed ID: 26736389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Multipath Effects in Indoor Positioning Systems by AoA and PoA Based on Optical Signals.
    De-La-Llana-Calvo Á; Lázaro-Galilea JL; Gardel-Vicente A; Rodríguez-Navarro D; Bravo-Muñoz I; Espinosa-Zapata F
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30795641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beacon-Related Parameters of Bluetooth Low Energy: Development of a Semi-Automatic System to Study Their Impact on Indoor Positioning Systems.
    de Blasio GS; Rodríguez-Rodríguez JC; García CR; Quesada-Arencibia A
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Hybrid Indoor Positioning System Based on Visible Light Communication and Bluetooth RSS Trilateration.
    Albraheem L; Alawad S
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Enhanced Indoor Positioning Technique Based on a Novel Received Signal Strength Indicator Distance Prediction and Correction Model.
    Nagah Amr M; El Attar HM; Abd El Azeem MH; El Badawy H
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33494417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bluetooth/PDR Integration Algorithm for an Indoor Positioning System.
    Li X; Wang J; Liu C
    Sensors (Basel); 2015 Sep; 15(10):24862-85. PubMed ID: 26404277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probability-Based Indoor Positioning Algorithm Using iBeacons.
    Wu T; Xia H; Liu S; Qiao Y
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Improved Bluetooth Indoor Positioning Method Using Dynamic Fingerprint Window.
    Ruan L; Zhang L; Zhou T; Long Y
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33352918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.