These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Phage Therapy Is Effective in a Mouse Model of Bacterial Equine Keratitis. Furusawa T; Iwano H; Hiyashimizu Y; Matsubara K; Higuchi H; Nagahata H; Niwa H; Katayama Y; Kinoshita Y; Hagiwara K; Iwasaki T; Tanji Y; Yokota H; Tamura Y Appl Environ Microbiol; 2016 Sep; 82(17):5332-9. PubMed ID: 27342558 [TBL] [Abstract][Full Text] [Related]
24. A Novel N4-Like Bacteriophage Isolated from a Wastewater Source in South India with Activity against Several Multidrug-Resistant Clinical Pseudomonas aeruginosa Isolates. Menon ND; Kumar MS; Satheesh Babu TG; Bose S; Vijayakumar G; Baswe M; Chatterjee M; D'Silva JR; Shetty K; Haripriyan J; Kumar A; Nair S; Somanath P; Nair BG; Nizet V; Kumar GB mSphere; 2021 Jan; 6(1):. PubMed ID: 33441405 [TBL] [Abstract][Full Text] [Related]
25. Effectiveness of bacteriophages in the sputum of cystic fibrosis patients. Saussereau E; Vachier I; Chiron R; Godbert B; Sermet I; Dufour N; Pirnay JP; De Vos D; Carrié F; Molinari N; Debarbieux L Clin Microbiol Infect; 2014 Dec; 20(12):O983-90. PubMed ID: 24920209 [TBL] [Abstract][Full Text] [Related]
26. Characterization of JG024, a pseudomonas aeruginosa PB1-like broad host range phage under simulated infection conditions. Garbe J; Wesche A; Bunk B; Kazmierczak M; Selezska K; Rohde C; Sikorski J; Rohde M; Jahn D; Schobert M BMC Microbiol; 2010 Nov; 10():301. PubMed ID: 21110836 [TBL] [Abstract][Full Text] [Related]
27. Bacteriophage protein Dap1 regulates evasion of antiphage immunity and Pseudomonas aeruginosa virulence impacting phage therapy in mice. Le S; Wei L; Wang J; Tian F; Yang Q; Zhao J; Zhong Z; Liu J; He X; Zhong Q; Lu S; Liang H Nat Microbiol; 2024 Jul; 9(7):1828-1841. PubMed ID: 38886583 [TBL] [Abstract][Full Text] [Related]
29. Lytic bacteriophages induce the secretion of antiviral and proinflammatory cytokines from human respiratory epithelial cells. Zamora PF; Reidy TG; Armbruster CR; Sun M; Van Tyne D; Turner PE; Koff JL; Bomberger JM PLoS Biol; 2024 Apr; 22(4):e3002566. PubMed ID: 38652717 [TBL] [Abstract][Full Text] [Related]
30. The uncharacterized PA3040-3042 operon is part of the cell envelope stress response and a tobramycin resistance determinant in a clinical isolate of Østergaard MZ; Nielsen FD; Meinfeldt MH; Kirkpatrick CL Microbiol Spectr; 2024 Aug; 12(8):e0387523. PubMed ID: 38949386 [TBL] [Abstract][Full Text] [Related]
31. Scorpionfish BPI is highly active against multiple drug-resistant Holzinger JM; Toelge M; Werner M; Ederer KU; Siegmund HI; Peterhoff D; Blaas SH; Gisch N; Brochhausen C; Gessner A; Bülow S Elife; 2023 Jul; 12():. PubMed ID: 37461324 [TBL] [Abstract][Full Text] [Related]
32. Effect of antibiotic treatment on bacteriophage production by a cystic fibrosis epidemic strain of Pseudomonas aeruginosa. Fothergill JL; Mowat E; Walshaw MJ; Ledson MJ; James CE; Winstanley C Antimicrob Agents Chemother; 2011 Jan; 55(1):426-8. PubMed ID: 20974862 [TBL] [Abstract][Full Text] [Related]
33. Phage against the Machine: The SIE-ence of Superinfection Exclusion. Bucher MJ; Czyż DM Viruses; 2024 Aug; 16(9):. PubMed ID: 39339825 [TBL] [Abstract][Full Text] [Related]
34. Studying Bacteriophage Efficacy Using a Zebrafish Model. Cafora M; Brix A; Forti F; Briani F; Pistocchi A Methods Mol Biol; 2024; 2734():151-169. PubMed ID: 38066368 [TBL] [Abstract][Full Text] [Related]
35. The Pseudomonas aeruginosa generalized transducing phage phiPA3 is a new member of the phiKZ-like group of 'jumbo' phages, and infects model laboratory strains and clinical isolates from cystic fibrosis patients. Monson R; Foulds I; Foweraker J; Welch M; Salmond GPC Microbiology (Reading); 2011 Mar; 157(Pt 3):859-867. PubMed ID: 21163841 [TBL] [Abstract][Full Text] [Related]
36. The potential of phage therapy in cystic fibrosis: Essential human-bacterial-phage interactions and delivery considerations for use in Pseudomonas aeruginosa-infected airways. Trend S; Fonceca AM; Ditcham WG; Kicic A; Cf A J Cyst Fibros; 2017 Nov; 16(6):663-670. PubMed ID: 28720345 [TBL] [Abstract][Full Text] [Related]
37. Heterogenous Susceptibility to R-Pyocins in Populations of Pseudomonas aeruginosa Sourced from Cystic Fibrosis Lungs. Mei M; Thomas J; Diggle SP mBio; 2021 May; 12(3):. PubMed ID: 33947755 [TBL] [Abstract][Full Text] [Related]
38. Phage Morons Play an Important Role in Pseudomonas aeruginosa Phenotypes. Tsao YF; Taylor VL; Kala S; Bondy-Denomy J; Khan AN; Bona D; Cattoir V; Lory S; Davidson AR; Maxwell KL J Bacteriol; 2018 Nov; 200(22):. PubMed ID: 30150232 [TBL] [Abstract][Full Text] [Related]
39. Bacteriophage-based therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: rationale and current status. Hraiech S; Brégeon F; Rolain JM Drug Des Devel Ther; 2015; 9():3653-63. PubMed ID: 26213462 [TBL] [Abstract][Full Text] [Related]
40. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Jault P; Leclerc T; Jennes S; Pirnay JP; Que YA; Resch G; Rousseau AF; Ravat F; Carsin H; Le Floch R; Schaal JV; Soler C; Fevre C; Arnaud I; Bretaudeau L; Gabard J Lancet Infect Dis; 2019 Jan; 19(1):35-45. PubMed ID: 30292481 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]