These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 39066622)

  • 1. Evolution of drought and frost responses in cool season grasses (Pooideae): was drought tolerance a precursor to frost tolerance?
    Stolsmo SP; Lindberg CL; Ween RE; Schat L; Preston JC; Humphreys AM; Fjellheim S
    J Exp Bot; 2024 Oct; 75(20):6405-6422. PubMed ID: 39066622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing the chilling- before drought-tolerance hypothesis in Pooideae grasses.
    Das A; Dedon N; Enders DJ; Fjellheim S; Preston JC
    Mol Ecol; 2023 Feb; 32(4):772-785. PubMed ID: 36420966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation.
    Linder HP; Lehmann CER; Archibald S; Osborne CP; Richardson DM
    Biol Rev Camb Philos Soc; 2018 May; 93(2):1125-1144. PubMed ID: 29230921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of Cold Acclimation and Its Role in Niche Transition in the Temperate Grass Subfamily Pooideae.
    Schubert M; Grønvold L; Sandve SR; Hvidsten TR; Fjellheim S
    Plant Physiol; 2019 May; 180(1):404-419. PubMed ID: 30850470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in climatic tolerance, but not stomatal traits, partially explains Pooideae grass species distributions.
    Das A; Prakash A; Dedon N; Doty A; Siddiqui M; Preston JC
    Ann Bot; 2021 Jul; 128(1):83-95. PubMed ID: 33772589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant functional trait responses to cope with drought in seven cool-season grasses.
    Taleb MH; Majidi MM; Pirnajmedin F; Maibody SAMM
    Sci Rep; 2023 Mar; 13(1):5285. PubMed ID: 37002231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is a seasonally reduced growth potential a convergent strategy to survive drought and frost in plants?
    Volaire F; Barkaoui K; Grémillet D; Charrier G; Dangles O; Lamarque LJ; Martin-StPaul N; Chuine I
    Ann Bot; 2023 Mar; 131(2):245-254. PubMed ID: 36567631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of plant growth responses to spring freezing and summer drought: a multispecies comparison.
    Kong RS; Henry HAL
    Am J Bot; 2019 Apr; 106(4):531-539. PubMed ID: 30934118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Successive evolutionary steps drove Pooideae grasses from tropical to temperate regions.
    Zhong J; Robbett M; Poire A; Preston JC
    New Phytol; 2018 Jan; 217(2):925-938. PubMed ID: 29091285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of the class I homeodomain transcription factor TaHDZipI-5 increases drought and frost tolerance in transgenic wheat.
    Yang Y; Luang S; Harris J; Riboni M; Li Y; Bazanova N; Hrmova M; Haefele S; Kovalchuk N; Lopato S
    Plant Biotechnol J; 2018 Jun; 16(6):1227-1240. PubMed ID: 29193733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drought and freezing vulnerability of the isolated hybrid aspen
    Deacon NJ; Grossman JJ; Cavender-Bares J
    Ecol Evol; 2019 Jul; 9(14):8062-8074. PubMed ID: 31380071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypic plasticity as an index of drought tolerance in three Patagonian steppe grasses.
    Couso LL; Fernández RJ
    Ann Bot; 2012 Sep; 110(4):849-57. PubMed ID: 22782237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Summer dormancy, drought survival and functional resource acquisition strategies in California perennial grasses.
    Balachowski JA; Bristiel PM; Volaire FA
    Ann Bot; 2016 Aug; 118(2):357-68. PubMed ID: 27325898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-zero cold tolerance of Spartina pectinata (prairie cordgrass) and Miscanthus × giganteus: candidate bioenergy crops for cool temperate climates.
    Friesen PC; Peixoto Mde M; Lee DK; Sage RF
    J Exp Bot; 2015 Jul; 66(14):4403-13. PubMed ID: 25873680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freezing tolerance in grasses along an altitudinal gradient in the Venezuelan Andes.
    Márquez EJ; Rada F; Fariñas MR
    Oecologia; 2006 Dec; 150(3):393-7. PubMed ID: 17024382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prior exposure to freezing stress enhances the survival and recovery of Poa pratensis exposed to severe drought.
    Kong RS; Henry HA
    Am J Bot; 2016 Nov; 103(11):1890-1896. PubMed ID: 27803002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of pines in the Iberian Peninsula agrees with species differences in foliage frost tolerance, not with vulnerability to freezing-induced xylem embolism.
    Fernández-Pérez L; Villar-Salvador P; Martínez-Vilalta J; Toca A; Zavala MA
    Tree Physiol; 2018 Apr; 38(4):507-516. PubMed ID: 29325114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms underlying frost tolerance in perennial grasses adapted to cold climates.
    Sandve SR; Kosmala A; Rudi H; Fjellheim S; Rapacz M; Yamada T; Rognli OA
    Plant Sci; 2011 Jan; 180(1):69-77. PubMed ID: 21421349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QTL analyses and comparative genetic mapping of frost tolerance, winter survival and drought tolerance in meadow fescue (Festuca pratensis Huds.).
    Alm V; Busso CS; Ergon A; Rudi H; Larsen A; Humphreys MW; Rognli OA
    Theor Appl Genet; 2011 Aug; 123(3):369-82. PubMed ID: 21505831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frost fatigue response to simulated frost drought using a centrifuge in Acer mono Maxim.
    Zhang W; Jiang Z; Zhao H; Feng F; Cai J
    Physiol Plant; 2019 Jun; 166(2):677-687. PubMed ID: 30136279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.