These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 39066730)
1. Electrocatalysis of CO Su Z; Elmahdy R; Biernat JF; Chen A; Lipkowski J Langmuir; 2024 Aug; 40(31):16249-16257. PubMed ID: 39066730 [TBL] [Abstract][Full Text] [Related]
2. Enzymatic Electrosynthesis of Formic Acid through Carbon Dioxide Reduction in a Bioelectrochemical System: Effect of Immobilization and Carbonic Anhydrase Addition. Srikanth S; Alvarez-Gallego Y; Vanbroekhoven K; Pant D Chemphyschem; 2017 Nov; 18(22):3174-3181. PubMed ID: 28303650 [TBL] [Abstract][Full Text] [Related]
3. Specific and sustainable bioelectro-reduction of carbon dioxide to formate on a novel enzymatic cathode. Zhang L; Liu J; Ong J; Li SF Chemosphere; 2016 Nov; 162():228-34. PubMed ID: 27501309 [TBL] [Abstract][Full Text] [Related]
4. Bioelectrocatalytic Activity of W-Formate Dehydrogenase Covalently Immobilized on Functionalized Gold and Graphite Electrodes. Alvarez-Malmagro J; Oliveira AR; Gutiérrez-Sánchez C; Villajos B; Pereira IAC; Vélez M; Pita M; De Lacey AL ACS Appl Mater Interfaces; 2021 Mar; 13(10):11891-11900. PubMed ID: 33656858 [TBL] [Abstract][Full Text] [Related]
5. Efficient and Selective Electrochemically Driven Enzyme-Catalyzed Reduction of Carbon Dioxide to Formate using Formate Dehydrogenase and an Artificial Cofactor. Jayathilake BS; Bhattacharya S; Vaidehi N; Narayanan SR Acc Chem Res; 2019 Mar; 52(3):676-685. PubMed ID: 30741524 [TBL] [Abstract][Full Text] [Related]
6. Direct electrochemical reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase. Cordas CM; Campaniço M; Baptista R; Maia LB; Moura I; Moura JJG J Inorg Biochem; 2019 Jul; 196():110694. PubMed ID: 31005821 [TBL] [Abstract][Full Text] [Related]
7. Interfacing Formate Dehydrogenase with Metal Oxides for the Reversible Electrocatalysis and Solar-Driven Reduction of Carbon Dioxide. Miller M; Robinson WE; Oliveira AR; Heidary N; Kornienko N; Warnan J; Pereira IAC; Reisner E Angew Chem Int Ed Engl; 2019 Mar; 58(14):4601-4605. PubMed ID: 30724432 [TBL] [Abstract][Full Text] [Related]
8. How does methylviologen cation radical supply two electrons to the formate dehydrogenase in the catalytic reduction process of CO Miyaji A; Amao Y Phys Chem Chem Phys; 2020 Sep; 22(33):18595-18605. PubMed ID: 32785412 [TBL] [Abstract][Full Text] [Related]
9. Stabilization of Formate Dehydrogenase in a Metal-Organic Framework for Bioelectrocatalytic Reduction of CO Chen Y; Li P; Noh H; Kung CW; Buru CT; Wang X; Zhang X; Farha OK Angew Chem Int Ed Engl; 2019 Jun; 58(23):7682-7686. PubMed ID: 30913356 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical Reduction of Carbon Dioxide to Methanol by Direct Injection of Electrons into Immobilized Enzymes on a Modified Electrode. Schlager S; Dumitru LM; Haberbauer M; Fuchsbauer A; Neugebauer H; Hiemetsberger D; Wagner A; Portenkirchner E; Sariciftci NS ChemSusChem; 2016 Mar; 9(6):631-5. PubMed ID: 26890322 [TBL] [Abstract][Full Text] [Related]
11. Hybrid molecular/enzymatic catalytic cascade for complete electro-oxidation of glycerol using a promiscuous NAD-dependent formate dehydrogenase from Candida boidinii. Abdellaoui S; Seow Chavez M; Matanovic I; Stephens AR; Atanassov P; Minteer SD Chem Commun (Camb); 2017 May; 53(39):5368-5371. PubMed ID: 28421214 [TBL] [Abstract][Full Text] [Related]
12. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate. Hartmann T; Leimkühler S FEBS J; 2013 Dec; 280(23):6083-96. PubMed ID: 24034888 [TBL] [Abstract][Full Text] [Related]
13. Efficient CO2-reducing activity of NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA for formate production from CO2 gas. Choe H; Joo JC; Cho DH; Kim MH; Lee SH; Jung KD; Kim YH PLoS One; 2014; 9(7):e103111. PubMed ID: 25061666 [TBL] [Abstract][Full Text] [Related]
14. Ready to use bioinformatics analysis as a tool to predict immobilisation strategies for protein direct electron transfer (DET). Cazelles R; Lalaoui N; Hartmann T; Leimkühler S; Wollenberger U; Antonietti M; Cosnier S Biosens Bioelectron; 2016 Nov; 85():90-95. PubMed ID: 27156017 [TBL] [Abstract][Full Text] [Related]
15. Theoretical study on CO Miyaji A; Amao Y Phys Chem Chem Phys; 2020 Dec; 22(46):26987-26994. PubMed ID: 33210103 [TBL] [Abstract][Full Text] [Related]
16. Formate dehydrogenases for CO Calzadiaz-Ramirez L; Meyer AS Curr Opin Biotechnol; 2022 Feb; 73():95-100. PubMed ID: 34348217 [TBL] [Abstract][Full Text] [Related]
17. Understanding How the Rate of C-H Bond Cleavage Affects Formate Oxidation Catalysis by a Mo-Dependent Formate Dehydrogenase. Robinson WE; Bassegoda A; Blaza JN; Reisner E; Hirst J J Am Chem Soc; 2020 Jul; 142(28):12226-12236. PubMed ID: 32551568 [TBL] [Abstract][Full Text] [Related]
18. The Reversible Electrochemical Interconversion of Formate and CO Kalimuthu P; Hakopian S; Niks D; Hille R; Bernhardt PV J Phys Chem B; 2023 Oct; 127(39):8382-8392. PubMed ID: 37728992 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of a biocathode for formic acid production upon the immobilization of formate dehydrogenase from Candida boidinii on a nanoporous carbon. Hernández-Ibáñez N; Gomis-Berenguer A; Montiel V; Ania CO; Iniesta J Chemosphere; 2022 Mar; 291(Pt 3):133117. PubMed ID: 34861253 [TBL] [Abstract][Full Text] [Related]
20. Formate Dehydrogenases Reduce CO Meneghello M; Oliveira AR; Jacq-Bailly A; Pereira IAC; Léger C; Fourmond V Angew Chem Int Ed Engl; 2021 Apr; 60(18):9964-9967. PubMed ID: 33599383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]