These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 39067217)

  • 1. Active microparticle propulsion pervasively powered by asymmetric AC field electrophoresis.
    Diwakar NM; Yossifon G; Miloh T; Velev OD
    J Colloid Interface Sci; 2024 Dec; 676():817-825. PubMed ID: 39067217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propulsion of Active Colloids by Self-Induced Field Gradients.
    Boymelgreen A; Yossifon G; Miloh T
    Langmuir; 2016 Sep; 32(37):9540-7. PubMed ID: 27611819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and Electric Field-Driven Active Propulsion of Patchy Microellipsoids.
    Lee JG; Al Harraq A; Bishop KJM; Bharti B
    J Phys Chem B; 2021 Apr; 125(16):4232-4240. PubMed ID: 33876931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorting of heterogeneous colloids by AC-dielectrophoretic forces in a microfluidic chip with asymmetric orifices.
    Zhao K; Hu M; van Baalen C; Alvarez L; Isa L
    J Colloid Interface Sci; 2023 Mar; 634():921-929. PubMed ID: 36571855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinning Janus doublets driven in uniform ac electric fields.
    Boymelgreen A; Yossifon G; Park S; Miloh T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):011003. PubMed ID: 24580163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inducing Propulsion of Colloidal Dimers by Breaking the Symmetry in Electrohydrodynamic Flow.
    Ma F; Yang X; Zhao H; Wu N
    Phys Rev Lett; 2015 Nov; 115(20):208302. PubMed ID: 26613479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of particle-electrode wall interactions in mobility of active Janus particles driven by electric fields.
    M Boymelgreen A; Kunti G; Garcia-Sanchez P; Ramos A; Yossifon G; Miloh T
    J Colloid Interface Sci; 2022 Jun; 616():465-475. PubMed ID: 35421638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrokinetic biased deterministic lateral displacement: scaling analysis and simulations.
    Calero V; García-Sánchez P; Ramos A; Morgan H
    J Chromatogr A; 2020 Jul; 1623():461151. PubMed ID: 32505271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of frequency and gravity on the orientation of active metallo-dielectric Janus particles translating under a uniform applied alternating-current electric field.
    Boymelgreen A; Kunti G; García-Sánchez P; Yossifon G
    Soft Matter; 2024 May; 20(20):4143-4151. PubMed ID: 38738604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An AC electrokinetic technique for collection and concentration of particles and cells on patterned electrodes.
    Bhatt KH; Grego S; Velev OD
    Langmuir; 2005 Jul; 21(14):6603-12. PubMed ID: 15982074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid Crystals-Enabled AC Electrokinetics.
    Peng C; Lavrentovich OD
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30634568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip micromanipulation and assembly of colloidal particles by electric fields.
    Velev OD; Bhatt KH
    Soft Matter; 2006 Aug; 2(9):738-750. PubMed ID: 32680214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled microparticle manipulation employing low frequency alternating electric fields in an array of insulators.
    Baylon-Cardiel JL; Jesús-Pérez NM; Chávez-Santoscoy AV; Lapizco-Encinas BH
    Lab Chip; 2010 Dec; 10(23):3235-42. PubMed ID: 20936247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectrophoretic Manipulation of Janus Particle in Conductive Media for Biomedical Applications.
    Lee M; Won JB; Jung DH; Kim J; Choi Y; Akyildiz K; Choi J; Kim K; Cho J; Yoon H; Koo HJ
    Biotechnol J; 2020 Dec; 15(12):e2000343. PubMed ID: 33067912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induced-charge electrophoresis of a tilted metal nanowire near an insulating wall.
    Flores-Mena JE; García-Sánchez P; Ramos A
    Phys Rev E; 2024 Apr; 109(4-2):045109. PubMed ID: 38755876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed propulsion of spherical particles along three dimensional helical trajectories.
    Lee JG; Brooks AM; Shelton WA; Bishop KJM; Bharti B
    Nat Commun; 2019 Jun; 10(1):2575. PubMed ID: 31189873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced phoretic self-propulsion of active colloids through surface charge asymmetry.
    Shrestha A; Olvera de la Cruz M
    Phys Rev E; 2024 Jan; 109(1-1):014613. PubMed ID: 38366412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scattering of Metal Colloids by a Circular Post under Electric Fields.
    Flores-Mena JE; García-Sánchez P; Ramos A
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed Motion of Metallodielectric Particles by Contact Charge Electrophoresis.
    Dou Y; Cartier CA; Fei W; Pandey S; Razavi S; Kretzschmar I; Bishop KJ
    Langmuir; 2016 Dec; 32(49):13167-13173. PubMed ID: 27951714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active colloid with externally induced periodic bipolar motility and its cooperative motion.
    Kato AN; Takeuchi KA; Sano M
    Soft Matter; 2022 Jul; 18(29):5435-5445. PubMed ID: 35820174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.