These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Improvement of stability and capacity of Co-free, Li-rich layered oxide Li Cai Z; Wang S; Zhu H; Tang X; Ma Y; Yu DYW; Zhang S; Song G; Yang W; Xu Y; Wen C J Colloid Interface Sci; 2023 Jan; 630(Pt B):281-289. PubMed ID: 36327731 [TBL] [Abstract][Full Text] [Related]
3. Understanding the Role of Dopant Metal Atoms on the Structural and Electronic Properties of Lithium-Rich Li Lo WT; Yu C; Leggesse EG; Nachimuthu S; Jiang JC J Phys Chem Lett; 2019 Sep; 10(17):4842-4850. PubMed ID: 31393733 [TBL] [Abstract][Full Text] [Related]
4. Lithium Antievaporation-Loss Engineering via Sodium/Potassium Doping Enables Superior Electrochemical Performance of High-Nickel Li-Rich Layered Oxide Cathodes. Mao D; Tan X; Guo L; Zhao T; Fan Z; Song L; Zhang Y; Liu G; Wang H; Chu W ACS Appl Mater Interfaces; 2022 May; 14(17):19594-19603. PubMed ID: 35466667 [TBL] [Abstract][Full Text] [Related]
5. Na Qiu H; Zhang R; Zhang Y Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175736 [TBL] [Abstract][Full Text] [Related]
6. Improving electrochemical performances of Lithium-rich oxide by cooperatively doping Cr and coating Li Tai Z; Zhu W; Shi M; Xin Y; Guo S; Wu Y; Chen Y; Liu Y J Colloid Interface Sci; 2020 Sep; 576():468-475. PubMed ID: 32473416 [TBL] [Abstract][Full Text] [Related]
7. Na doping into Li-rich layered single crystal nanoparticles for high-performance lithium-ion batteries cathodes. Li J; Lin H; Tang C; Yu D; Sun J; Zhang W; Wang Y Nanotechnology; 2021 Nov; 33(6):. PubMed ID: 34724655 [TBL] [Abstract][Full Text] [Related]
8. Enhanced electrochemical properties of potassium-doped lithium-rich oxide@carbon as cathode material for lithium-ion batteries. Cheng Y; Wu Z; Dai X; Hu J; Tai Z; Sun J; Liu Y; Tan Q; Liu Y J Colloid Interface Sci; 2022 Jan; 605():718-726. PubMed ID: 34365308 [TBL] [Abstract][Full Text] [Related]
9. Understanding the influence of Mg doping for the stabilization of capacity and higher discharge voltage of Li- and Mn-rich cathodes for Li-ion batteries. Nayak PK; Grinblat J; Levi E; Levi M; Markovsky B; Aurbach D Phys Chem Chem Phys; 2017 Feb; 19(8):6142-6152. PubMed ID: 28191568 [TBL] [Abstract][Full Text] [Related]
10. Synergistic effect of uniform lattice cation/anion doping to improve structural and electrochemical performance stability for Li-rich cathode materials. Liu H; He B; Xiang W; Li YC; Bai C; Liu YP; Zhou W; Chen X; Liu Y; Gao S; Guo X Nanotechnology; 2020 Nov; 31(45):455704. PubMed ID: 32438357 [TBL] [Abstract][Full Text] [Related]
11. Uniform Na He W; Liu P; Qu B; Zheng Z; Zheng H; Deng P; Li P; Li S; Huang H; Wang L; Xie Q; Peng DL Adv Sci (Weinh); 2019 Jul; 6(14):1802114. PubMed ID: 31380201 [TBL] [Abstract][Full Text] [Related]
12. Multiscale Deficiency Integration by Na-Rich Engineering for High-Stability Li-Rich Layered Oxide Cathodes. Liu Q; Xie T; Xie Q; He W; Zhang Y; Zheng H; Lu X; Wei W; Sa B; Wang L; Peng DL ACS Appl Mater Interfaces; 2021 Feb; 13(7):8239-8248. PubMed ID: 33555872 [TBL] [Abstract][Full Text] [Related]
13. Nonstoichiometry of Li-rich cathode material with improved cycling ability for lithium-ion batteries. Tai Z; Li X; Zhu W; Shi M; Xin Y; Guo S; Wu Y; Chen Y; Liu Y J Colloid Interface Sci; 2020 Jun; 570():264-272. PubMed ID: 32163788 [TBL] [Abstract][Full Text] [Related]
14. Surface Engineering and Trace Cobalt Doping Suppress Overall Li/Ni Mixing of Li-rich Mn-based Cathode Materials. Chen J; Huang Z; Zeng W; Ma J; Cao F; Wang T; Tian W; Mu S ACS Appl Mater Interfaces; 2022 Feb; 14(5):6649-6657. PubMed ID: 35080843 [TBL] [Abstract][Full Text] [Related]
15. High-Performance Heterostructured Cathodes for Lithium-Ion Batteries with a Ni-Rich Layered Oxide Core and a Li-Rich Layered Oxide Shell. Oh P; Oh SM; Li W; Myeong S; Cho J; Manthiram A Adv Sci (Weinh); 2016 Nov; 3(11):1600184. PubMed ID: 27980994 [TBL] [Abstract][Full Text] [Related]
16. Tuning Li Li J; Li W; Zhang C; Han C; Chen X; Zhao H; Xu H; Jia G; Li Z; Li J; Zhang Y; Guo X; Gao F; Liu J; Qiu X ACS Nano; 2023 Sep; 17(17):16827-16839. PubMed ID: 37582222 [TBL] [Abstract][Full Text] [Related]
17. Durable lithium-ion insertion/extraction and migration behavior of LiF-encapsulated cobalt-free lithium-rich manganese-based layered oxide cathode. Lv ZC; Wang FF; Wang JC; Wang PF; Yi TF J Colloid Interface Sci; 2023 Nov; 649():175-184. PubMed ID: 37348337 [TBL] [Abstract][Full Text] [Related]
18. Phase Engineering via Aluminum Doping Enhances the Electrochemical Stability of Lithium-Rich Cobalt-Free Layered Oxides for Lithium-Ion Batteries. De Sloovere D; Mylavarapu SK; D'Haen J; Thersleff T; Jaworski A; Grins J; Svensson G; Stoyanova R; Jøsang LO; Prakasha KR; Merlo M; Martínez E; Nel-Lo Pascual M; Jacas Biendicho J; Van Bael MK; Hardy A Small; 2024 Aug; 20(31):e2400876. PubMed ID: 38429239 [TBL] [Abstract][Full Text] [Related]
19. Remarkably Improved Electrochemical Performance of Li- and Mn-Rich Cathodes upon Substitution of Mn with Ni. Kumar Nayak P; Grinblat J; Levi E; Penki TR; Levi M; Sun YK; Markovsky B; Aurbach D ACS Appl Mater Interfaces; 2017 Feb; 9(5):4309-4319. PubMed ID: 27669499 [TBL] [Abstract][Full Text] [Related]
20. Achieving structural stability and enhanced electrochemical performance through Nb-doping into Li- and Mn-rich layered cathode for lithium-ion batteries. Yun S; Yu J; Lee W; Lee H; Yoon WS Mater Horiz; 2023 Mar; 10(3):829-841. PubMed ID: 36597945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]