These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 39068346)

  • 1. Construction and Characterization of Light-Responsive Transcriptional Systems.
    Gligorovski V; Rahi SJ
    Methods Mol Biol; 2024; 2844():261-275. PubMed ID: 39068346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol to probe how promoters decode TF dynamics in Saccharomyces cerevisiae by combining optogenetic control with microscopy.
    Sweeney K; Luffey EL; McClean MN
    STAR Protoc; 2024 Sep; 5(3):103002. PubMed ID: 39003745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast.
    Salinas F; Rojas V; Delgado V; López J; Agosin E; Larrondo LF
    mBio; 2018 Jul; 9(4):. PubMed ID: 30065085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A yeast optogenetic toolkit (yOTK) for gene expression control in Saccharomyces cerevisiae.
    An-Adirekkun JM; Stewart CJ; Geller SH; Patel MT; Melendez J; Oakes BL; Noyes MB; McClean MN
    Biotechnol Bioeng; 2020 Mar; 117(3):886-893. PubMed ID: 31788779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Optogenetic Platform for Real-Time, Single-Cell Interrogation of Stochastic Transcriptional Regulation.
    Rullan M; Benzinger D; Schmidt GW; Milias-Argeitis A; Khammash M
    Mol Cell; 2018 May; 70(4):745-756.e6. PubMed ID: 29775585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic control of transcription in zebrafish.
    Liu H; Gomez G; Lin S; Lin S; Lin C
    PLoS One; 2012; 7(11):e50738. PubMed ID: 23226369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The rise and shine of yeast optogenetics.
    Figueroa D; Rojas V; Romero A; Larrondo LF; Salinas F
    Yeast; 2021 Feb; 38(2):131-146. PubMed ID: 33119964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular and Molecular Optimization of a LOV (Light-Oxygen-Voltage)-Based Optogenetic Switch in Yeast.
    Romero A; Rojas V; Delgado V; Salinas F; Larrondo LF
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic switches for light-controlled gene expression in yeast.
    Salinas F; Rojas V; Delgado V; Agosin E; Larrondo LF
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2629-2640. PubMed ID: 28210796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implications of maintenance of mother-bud neck size in diverse vital processes of Saccharomyces cerevisiae.
    Kubo K; Okada H; Shimamoto T; Kimori Y; Mizunuma M; Bi E; Ohnuki S; Ohya Y
    Curr Genet; 2019 Feb; 65(1):253-267. PubMed ID: 30066140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic Tools for Control of Public Goods in Saccharomyces cerevisiae.
    Moreno Morales N; Patel MT; Stewart CJ; Sweeney K; McClean MN
    mSphere; 2021 Aug; 6(4):e0058121. PubMed ID: 34431694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring fast gene dynamics in single cells with time-lapse luminescence microscopy.
    Mazo-Vargas A; Park H; Aydin M; Buchler NE
    Mol Biol Cell; 2014 Nov; 25(22):3699-708. PubMed ID: 25232010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single-chain and fast-responding light-inducible Cre recombinase as a novel optogenetic switch.
    Duplus-Bottin H; Spichty M; Triqueneaux G; Place C; Mangeot PE; Ohlmann T; Vittoz F; Yvert G
    Elife; 2021 Feb; 10():. PubMed ID: 33620312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lustro: High-Throughput Optogenetic Experiments Enabled by Automation and a Yeast Optogenetic Toolkit.
    Harmer ZP; McClean MN
    ACS Synth Biol; 2023 Jul; 12(7):1943-1951. PubMed ID: 37434272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Multiplexed Control and Modeling of Optogenetic Systems Using the High-Throughput Optogenetic Platform, Lustro.
    Harmer ZP; Thompson JC; Cole DL; Venturelli OS; Zavala VM; McClean MN
    ACS Synth Biol; 2024 May; 13(5):1424-1433. PubMed ID: 38684225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A light-inducible organelle-targeting system for dynamically activating and inactivating signaling in budding yeast.
    Yang X; Jost AP; Weiner OD; Tang C
    Mol Biol Cell; 2013 Aug; 24(15):2419-30. PubMed ID: 23761071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional regulatory network shapes the genome structure of Saccharomyces cerevisiae.
    Li S; Heermann DW
    Nucleus; 2013; 4(3):216-28. PubMed ID: 23674068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional networks: reverse-engineering gene regulation on a global scale.
    Chua G; Robinson MD; Morris Q; Hughes TR
    Curr Opin Microbiol; 2004 Dec; 7(6):638-46. PubMed ID: 15556037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time optogenetic control of intracellular protein concentration in microbial cell cultures.
    Melendez J; Patel M; Oakes BL; Xu P; Morton P; McClean MN
    Integr Biol (Camb); 2014 Mar; 6(3):366-72. PubMed ID: 24477515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model-guided optogenetic study of PKA signaling in budding yeast.
    Stewart-Ornstein J; Chen S; Bhatnagar R; Weissman JS; El-Samad H
    Mol Biol Cell; 2017 Jan; 28(1):221-227. PubMed ID: 28035051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.