These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 39068614)

  • 1. Single modular flow-electrode capacitive deionization using modified Prussian blue analogues as cation intercalation electrode for continuous water desalination.
    Zhao Y; Fan X; Song T; Leng B; Qin Y; Qian G
    Environ Sci Pollut Res Int; 2024 Aug; 31(36):49358-49371. PubMed ID: 39068614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional titanium mesh-based flow electrode capacitive deionization for salt separation and enrichment in high salinity water.
    Zhang X; Pang M; Wei Y; Liu F; Zhang H; Zhou H
    Water Res; 2024 Mar; 251():121147. PubMed ID: 38277832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing Brackish Water Desalination using Magnetic Flow-electrode Capacitive Deionization.
    Xu L; Peng S; Mao Y; Zong Y; Zhang X; Wu D
    Water Res; 2022 Jun; 216():118290. PubMed ID: 35306460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process model for flow-electrode capacitive deionization for energy consumption estimation and system optimization.
    Shi C; Wang H; Li A; Zhu G; Zhao X; Wu F
    Water Res; 2023 Feb; 230():119517. PubMed ID: 36608524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane-Current Collector-Based Flow-Electrode Capacitive Deionization System: A Novel Stack Configuration for Scale-Up Desalination.
    Xu L; Mao Y; Zong Y; Peng S; Zhang X; Wu D
    Environ Sci Technol; 2021 Oct; 55(19):13286-13296. PubMed ID: 34529405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated Flow-Electrode Capacitive Deionization and Microfiltration System for Continuous and Energy-Efficient Brackish Water Desalination.
    Zhang C; Wu L; Ma J; Pham AN; Wang M; Waite TD
    Environ Sci Technol; 2019 Nov; 53(22):13364-13373. PubMed ID: 31657549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scale-up desalination: Membrane-current collector assembly in flow-electrode capacitive deionization system.
    Xu L; Mao Y; Zong Y; Wu D
    Water Res; 2021 Feb; 190():116782. PubMed ID: 33387952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Faradic capacitive deionization (FCDI) for desalination and ion removal from wastewater.
    Sayed ET; Al Radi M; Ahmad A; Abdelkareem MA; Alawadhi H; Atieh MA; Olabi AG
    Chemosphere; 2021 Jul; 275():130001. PubMed ID: 33984902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow-electrode capacitive deionization utilizing three-dimensional foam current collector for real seawater desalination.
    Zhang X; Zhou H; He Z; Zhang H; Zhao H
    Water Res; 2022 Jul; 220():118642. PubMed ID: 35635913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water Desalination by Flow-Electrode Capacitive Deionization in Overlimiting Current Regimes.
    Tang K; Zhou K
    Environ Sci Technol; 2020 May; 54(9):5853-5863. PubMed ID: 32271562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration.
    Ma J; Ma J; Zhang C; Song J; Dong W; Waite TD
    Water Res; 2020 Jan; 168():115186. PubMed ID: 31655437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow-electrode capacitive deionization: A review and new perspectives.
    Yang F; He Y; Rosentsvit L; Suss ME; Zhang X; Gao T; Liang P
    Water Res; 2021 Jul; 200():117222. PubMed ID: 34029869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of conductive additives on the transport properties of porous flow-through electrodes with insulative particles and their optimization for Faradaic deionization.
    Reale ER; Shrivastava A; Smith KC
    Water Res; 2019 Nov; 165():114995. PubMed ID: 31450221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Does Temperature Affect the Charge Transfer Process in Flow Electrode Capacitive Deionization?
    Zhang X; Zhou H; Zhang H
    Environ Sci Technol; 2024 Aug; 58(33):14886-14894. PubMed ID: 39073867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive Electrochemical Impedance Spectroscopy Study of Flow-Electrode Capacitive Deionization Cells.
    Kim N; Park J; Cho Y; Yoo CY
    Environ Sci Technol; 2023 Jun; 57(23):8808-8817. PubMed ID: 37230994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion-Selective Metathesis Design of Flow-Electrode Capacitive Deionization for Energy-Saving and Anti-Scaling Softening of Brackish Water.
    Luo L; Liu T; He J; Ma J; Yu HQ
    Environ Sci Technol; 2024 Jul; 58(29):13120-13130. PubMed ID: 38985512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow electrode capacitive desalination of industrial RO reject.
    Mathew A; Janakiraman M; Karunagaran JR; Ramasamy N; Natesan B
    Environ Sci Pollut Res Int; 2024 Apr; 31(19):28764-28774. PubMed ID: 38558337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron Transfer of Activated Carbon to Anode Excites and Regulates Desalination in Flow Electrode Capacitive Deionization.
    Wang T; Zhang Z; Gu Z; Hu C; Qu J
    Environ Sci Technol; 2023 Feb; 57(6):2566-2574. PubMed ID: 36719078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes.
    Cho Y; Yoo CY; Lee SW; Yoon H; Lee KS; Yang S; Kim DK
    Water Res; 2019 Mar; 151():252-259. PubMed ID: 30605773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetic Comparison of Flow-Electrode Capacitive Deionization and Membrane Technology: Assessment on Applicability in Desalination Fields.
    Lim J; Lee S; Lee H; Hong S
    Environ Sci Technol; 2024 Apr; 58(14):6181-6191. PubMed ID: 38536729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.