These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 39068732)
1. Comparative genomics of the carmine cochineal symbiont Candidatus Dactylopiibacterium carminicum reveals possible protection to the host against viruses via CRISPR/Cas. Bustamante-Brito R; Vera-Ponce de León A; Rosenblueth M; Martínez-Romero E Syst Appl Microbiol; 2024 Sep; 47(5):126540. PubMed ID: 39068732 [TBL] [Abstract][Full Text] [Related]
2. Candidatus Dactylopiibacterium carminicum, a Nitrogen-Fixing Symbiont of Dactylopius Cochineal Insects (Hemiptera: Coccoidea: Dactylopiidae). Vera-Ponce de León A; Ormeño-Orrillo E; Ramírez-Puebla ST; Rosenblueth M; Degli Esposti M; Martínez-Romero J; Martínez-Romero E Genome Biol Evol; 2017 Sep; 9(9):2237-2250. PubMed ID: 30605507 [TBL] [Abstract][Full Text] [Related]
3. Metatranscriptomic Analysis of the Bacterial Symbiont Bustamante-Brito R; Vera-Ponce de León A; Rosenblueth M; Martínez-Romero JC; Martínez-Romero E Life (Basel); 2019 Jan; 9(1):. PubMed ID: 30609847 [TBL] [Abstract][Full Text] [Related]
4. Molecular phylogeny of the genus Dactylopius (Hemiptera: Dactylopiidae) and identification of the symbiotic bacteria. Ramírez-Puebla ST; Rosenblueth M; Chávez-Moreno CK; de Lyra MC; Tecante A; Martínez-Romero E Environ Entomol; 2010 Aug; 39(4):1178-83. PubMed ID: 22127169 [TBL] [Abstract][Full Text] [Related]
5. Functional genomics of a Spiroplasma associated with the carmine cochineals Dactylopius coccus and Dactylopius opuntiae. Vera-Ponce León A; Dominguez-Mirazo M; Bustamante-Brito R; Higareda-Alvear V; Rosenblueth M; Martínez-Romero E BMC Genomics; 2021 Apr; 22(1):240. PubMed ID: 33823812 [TBL] [Abstract][Full Text] [Related]
6. Genomes of Candidatus Wolbachia bourtzisii wDacA and Candidatus Wolbachia pipientis wDacB from the Cochineal Insect Dactylopius coccus (Hemiptera: Dactylopiidae). Ramírez-Puebla ST; Ormeño-Orrillo E; Vera-Ponce de León A; Lozano L; Sanchez-Flores A; Rosenblueth M; Martínez-Romero E G3 (Bethesda); 2016 Oct; 6(10):3343-3349. PubMed ID: 27543297 [TBL] [Abstract][Full Text] [Related]
7. Genome sequence of "Candidatus Walczuchella monophlebidarum" the flavobacterial endosymbiont of Llaveia axin axin (Hemiptera: Coccoidea: Monophlebidae). Rosas-Pérez T; Rosenblueth M; Rincón-Rosales R; Mora J; Martínez-Romero E Genome Biol Evol; 2014 Mar; 6(3):714-26. PubMed ID: 24610838 [TBL] [Abstract][Full Text] [Related]
8. Differential genome evolution between companion symbionts in an insect-bacterial symbiosis. Bennett GM; McCutcheon JP; MacDonald BR; Romanovicz D; Moran NA mBio; 2014 Sep; 5(5):e01697-14. PubMed ID: 25271287 [TBL] [Abstract][Full Text] [Related]
9. Comparative Genomics of the Dual-Obligate Symbionts from the Treehopper, Entylia carinata (Hemiptera: Membracidae), Provide Insight into the Origins and Evolution of an Ancient Symbiosis. Mao M; Yang X; Poff K; Bennett G Genome Biol Evol; 2017 Jun; 9(6):1803-1815. PubMed ID: 28854637 [TBL] [Abstract][Full Text] [Related]
10. The Cost of Metabolic Interactions in Symbioses between Insects and Bacteria with Reduced Genomes. Ankrah NYD; Chouaia B; Douglas AE mBio; 2018 Sep; 9(5):. PubMed ID: 30254121 [TBL] [Abstract][Full Text] [Related]
11. Fungal Community Associated with Dactylopius (Hemiptera: Coccoidea: Dactylopiidae) and Its Role in Uric Acid Metabolism. Vera-Ponce de León A; Sanchez-Flores A; Rosenblueth M; Martínez-Romero E Front Microbiol; 2016; 7():954. PubMed ID: 27446001 [TBL] [Abstract][Full Text] [Related]
12. Genomic Insight into Symbiosis-Induced Insect Color Change by a Facultative Bacterial Endosymbiont, " Nikoh N; Tsuchida T; Maeda T; Yamaguchi K; Shigenobu S; Koga R; Fukatsu T mBio; 2018 Jun; 9(3):. PubMed ID: 29895637 [TBL] [Abstract][Full Text] [Related]
13. Controlled Mass Rearing of Cochineal Insect (Hemiptera: Dactylopiidae) Using Two Laboratory-Scale Production Systems in Peru. Roque-Rodríguez FJ J Insect Sci; 2022 Jan; 22(1):. PubMed ID: 34942006 [TBL] [Abstract][Full Text] [Related]
14. Genetic variation amongst biotypes of Dactylopius tomentosus. Mathenge CW; Riegler M; Beattie GA; Spooner-Hart RN; Holford P Insect Sci; 2015 Mar; 22(3):360-74. PubMed ID: 24619863 [TBL] [Abstract][Full Text] [Related]
15. Symbiont Acquisition and Replacement as a Source of Ecological Innovation. Sudakaran S; Kost C; Kaltenpoth M Trends Microbiol; 2017 May; 25(5):375-390. PubMed ID: 28336178 [TBL] [Abstract][Full Text] [Related]
16. The eroded genome of a Psychotria leaf symbiont: hypotheses about lifestyle and interactions with its plant host. Carlier AL; Eberl L Environ Microbiol; 2012 Oct; 14(10):2757-69. PubMed ID: 22548823 [TBL] [Abstract][Full Text] [Related]
17. Comparative genomics of a quadripartite symbiosis in a planthopper host reveals the origins and rearranged nutritional responsibilities of anciently diverged bacterial lineages. Bennett GM; Mao M Environ Microbiol; 2018 Dec; 20(12):4461-4472. PubMed ID: 30047196 [TBL] [Abstract][Full Text] [Related]
18. Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Sloan DB; Moran NA Mol Biol Evol; 2012 Dec; 29(12):3781-92. PubMed ID: 22821013 [TBL] [Abstract][Full Text] [Related]
19. Cicada Endosymbionts Have tRNAs That Are Correctly Processed Despite Having Genomes That Do Not Encode All of the tRNA Processing Machinery. Van Leuven JT; Mao M; Xing DD; Bennett GM; McCutcheon JP mBio; 2019 Jun; 10(3):. PubMed ID: 31213566 [TBL] [Abstract][Full Text] [Related]
20. Two host clades, two bacterial arsenals: evolution through gene losses in facultative endosymbionts. Rollat-Farnier PA; Santos-Garcia D; Rao Q; Sagot MF; Silva FJ; Henri H; Zchori-Fein E; Latorre A; Moya A; Barbe V; Liu SS; Wang XW; Vavre F; Mouton L Genome Biol Evol; 2015 Feb; 7(3):839-55. PubMed ID: 25714744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]