These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 39069040)

  • 21. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin.
    Nousiainen P; Kontro J; Manner H; Hatakka A; Sipilä J
    Fungal Genet Biol; 2014 Nov; 72():137-149. PubMed ID: 25108071
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and characterization of a novel thermotolerant alkali lignin-degrading bacterium Aneurinibacillus sp. LD3 and its application in food waste composting.
    Wu X; Amanze C; Wang J; Yu Z; Shen L; Wu X; Li J; Yu R; Liu Y; Zeng W
    Chemosphere; 2022 Nov; 307(Pt 3):135859. PubMed ID: 35987270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of Lignin-Degrading Enzymes.
    Xiao J; Zhang S; Chen G
    Protein Pept Lett; 2020; 27(7):574-581. PubMed ID: 31868142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Manganese, Mn-dependent peroxidases, and the biodegradation of lignin.
    Forrester IT; Grabski AC; Burgess RR; Leatham GF
    Biochem Biophys Res Commun; 1988 Dec; 157(3):992-9. PubMed ID: 3207431
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergistic Degradation of Maize Straw Lignin by Manganese Peroxidase from Irpex lacteus.
    Chen H; Li S; Cui Z; Feng T; Wang H; Ni Z; Gao E; Fang Z
    Appl Biochem Biotechnol; 2023 Jun; 195(6):3855-3871. PubMed ID: 36251112
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wheat straw: An inefficient substrate for rapid natural lignocellulosic composting.
    Zhang L; Jia Y; Zhang X; Feng X; Wu J; Wang L; Chen G
    Bioresour Technol; 2016 Jun; 209():402-6. PubMed ID: 26980627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation, characterization and transcriptome analysis of a novel Antarctic Aspergillus sydowii strain MS-19 as a potential lignocellulosic enzyme source.
    Cong B; Wang N; Liu S; Liu F; Yin X; Shen J
    BMC Microbiol; 2017 May; 17(1):129. PubMed ID: 28558650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of glyphosate and other pesticides by ligninolytic enzymes.
    Pizzul L; Castillo Mdel P; Stenström J
    Biodegradation; 2009 Nov; 20(6):751-9. PubMed ID: 19396551
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel lignin degradation bacteria-Bacillus amyloliquefaciens SL-7 used to degrade straw lignin efficiently.
    Mei J; Shen X; Gang L; Xu H; Wu F; Sheng L
    Bioresour Technol; 2020 Aug; 310():123445. PubMed ID: 32361649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Response of humification process to fungal inoculant in corn straw composting with two different kinds of nitrogen sources.
    Dong S; Li R; Zhou K; Wei Y; Li J; Cheng M; Chen P; Hu X
    Sci Total Environ; 2024 Oct; 946():174461. PubMed ID: 38964380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Illite/smectite clay regulating laccase encoded genes to boost lignin decomposition and humus formation in composting habitats revealed by metagenomics analysis.
    Meng Q; Wang S; Niu Q; Yan H; Li G; Zhu Q; Li Q
    Bioresour Technol; 2021 Oct; 338():125546. PubMed ID: 34274584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8].
    Li HY; Li SN; Wang SX; Wang Q; Xue YY; Zhu BC
    Ying Yong Sheng Tai Xue Bao; 2015 May; 26(5):1404-10. PubMed ID: 26571658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential expression of manganese peroxidase and laccase in white-rot fungi in the presence of manganese or aromatic compounds.
    Scheel T; Höfer M; Ludwig S; Hölker U
    Appl Microbiol Biotechnol; 2000 Nov; 54(5):686-91. PubMed ID: 11131396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of organic acid chelators in manganese regulation of lignin degradation by Phanerochaete chrysosporium.
    Perez J; Jeffries TW
    Appl Biochem Biotechnol; 1993; 39-40():227-38. PubMed ID: 8323262
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane.
    Kaur H; Kapoor S; Kaur G
    Environ Monit Assess; 2016 Oct; 188(10):588. PubMed ID: 27670886
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lignocellulose utilization and bacterial communities of millet straw based mushroom (Agaricus bisporus) production.
    Zhang HL; Wei JK; Wang QH; Yang R; Gao XJ; Sang YX; Cai PP; Zhang GQ; Chen QJ
    Sci Rep; 2019 Feb; 9(1):1151. PubMed ID: 30718596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of manganese peroxidase and laccase production in the South American fungus Fomes sclerodermeus (Lév.) Cke.
    Papinutti VL; Forchiassin F
    J Ind Microbiol Biotechnol; 2003 Sep; 30(9):536-41. PubMed ID: 12905074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Comparison of lignocellulolytic enzyme profiles secreted by Panus conchatus and Phanerochaete chrysosporium during solid state cultures].
    Wang C; Yu H; Fu S
    Wei Sheng Wu Xue Bao; 1999 Apr; 39(2):127-31. PubMed ID: 12555416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined effect of enzyme inducers and nitrate on selective lignin degradation in wheat straw by Ganoderma lobatum.
    Hermosilla E; Schalchli H; Mutis A; Diez MC
    Environ Sci Pollut Res Int; 2017 Sep; 24(27):21984-21996. PubMed ID: 28785941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cooperation between ligninolytic enzymes produced by superior mixed flora.
    Wang HL; Li ZY; Guo WY; Wang ZY; Pan F
    J Environ Sci (China); 2005; 17(4):620-2. PubMed ID: 16158591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.