These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 39069053)
1. Boosting catalytic efficiency of lipase by regulating amphiphilic microenvironment through reversible addition-fragmentation chain transfer polymerized modifications on polyacrylonitrile fiber. Ying A; Bai L; Jiang X; Shen R; Liu Y; Liu Z Int J Biol Macromol; 2024 Oct; 277(Pt 1):134196. PubMed ID: 39069053 [TBL] [Abstract][Full Text] [Related]
2. Co-Immobilization of Abdulmalek SA; Li K; Wang J; Ghide MK; Yan Y Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769395 [TBL] [Abstract][Full Text] [Related]
3. Covalent immobilization of lipase from Candida rugosa on epoxy-activated cloisite 30B as a new heterofunctional carrier and its application in the synthesis of banana flavor and production of biodiesel. Aghaei H; Yasinian A; Taghizadeh A Int J Biol Macromol; 2021 May; 178():569-579. PubMed ID: 33667558 [TBL] [Abstract][Full Text] [Related]
4. Lipases as Biocatalyst for Biodiesel Production. Vargas M; Niehus X; Casas-Godoy L; Sandoval G Methods Mol Biol; 2018; 1835():377-390. PubMed ID: 30109664 [TBL] [Abstract][Full Text] [Related]
5. Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester. Temoçin Z J Biomater Sci Polym Ed; 2013; 24(14):1618-35. PubMed ID: 23574345 [TBL] [Abstract][Full Text] [Related]
6. Immobilized lipase from Candida sp. 99-125 on hydrophobic silicate: characterization and applications. Zhao B; Liu X; Jiang Y; Zhou L; He Y; Gao J Appl Biochem Biotechnol; 2014 Aug; 173(7):1802-14. PubMed ID: 24879595 [TBL] [Abstract][Full Text] [Related]
7. Enhanced catalytic performance of Candida rugosa lipase through immobilization on zirconium-2-methylimidazole: A novel biocatalyst approach. Almulaiky YQ; Altalhi T; El-Shishtawy RM Int J Biol Macromol; 2024 Nov; 279(Pt 2):135211. PubMed ID: 39216567 [TBL] [Abstract][Full Text] [Related]
8. Preparation of immobilized lipase by modified polyacrylonitrile hollow membrane using nitrile-click chemistry. Li Y; Wang H; Lu J; Chu A; Zhang L; Ding Z; Xu S; Gu Z; Shi G Bioresour Technol; 2019 Feb; 274():9-17. PubMed ID: 30496970 [TBL] [Abstract][Full Text] [Related]
9. Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry. Trbojević Ivić J; Veličković D; Dimitrijević A; Bezbradica D; Dragačević V; Gavrović Jankulović M; Milosavić N J Sci Food Agric; 2016 Sep; 96(12):4281-7. PubMed ID: 26801832 [TBL] [Abstract][Full Text] [Related]
10. Lipases as biocatalyst for biodiesel production. Fan X; Niehus X; Sandoval G Methods Mol Biol; 2012; 861():471-83. PubMed ID: 22426735 [TBL] [Abstract][Full Text] [Related]
11. Biodiesel production with immobilized lipase: A review. Tan T; Lu J; Nie K; Deng L; Wang F Biotechnol Adv; 2010; 28(5):628-34. PubMed ID: 20580809 [TBL] [Abstract][Full Text] [Related]
12. Immobilization of Candida rugosa lipase for resolution of racimic ibuprofen. Ghofrani S; Allameh A; Yaghmaei P; Norouzian D Daru; 2021 Jun; 29(1):117-123. PubMed ID: 33528796 [TBL] [Abstract][Full Text] [Related]
13. Study on the synthesis of pine sterol esters in solvent-free systems catalyzed by Candida rugosa lipase immobilized on hydrophobic macroporous resin. Zhang Y; Ma G; Wang S; Nian B; Hu Y J Sci Food Agric; 2023 Dec; 103(15):7849-7861. PubMed ID: 37467367 [TBL] [Abstract][Full Text] [Related]
14. Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters. Zheng MM; Lu Y; Dong L; Guo PM; Deng QC; Li WL; Feng YQ; Huang FH Bioresour Technol; 2012 Jul; 115():141-6. PubMed ID: 22209442 [TBL] [Abstract][Full Text] [Related]
15. Immobilization of Pseudomonas fluorescens lipase on hydrophobic supports and application in biodiesel synthesis by transesterification of vegetable oils in solvent-free systems. Lima LN; Oliveira GC; Rojas MJ; Castro HF; Da Rós PC; Mendes AA; Giordano RL; Tardioli PW J Ind Microbiol Biotechnol; 2015 Apr; 42(4):523-35. PubMed ID: 25626526 [TBL] [Abstract][Full Text] [Related]
16. Improved Performance of Magnetic Cross-Linked Lipase Aggregates by Interfacial Activation: A Robust and Magnetically Recyclable Biocatalyst for Transesterification of Jatropha Oil. Zhang W; Yang H; Liu W; Wang N; Yu X Molecules; 2017 Dec; 22(12):. PubMed ID: 29215562 [TBL] [Abstract][Full Text] [Related]
17. Taguchi design-assisted immobilization of Candida rugosa lipase onto a ternary alginate/nanocellulose/montmorillonite composite: Physicochemical characterization, thermal stability and reusability studies. Mohd Hussin FNN; Attan N; Wahab RA Enzyme Microb Technol; 2020 May; 136():109506. PubMed ID: 32331714 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of Candida rugosa Lipase Immobilized on Magnetic Nanoparticles in Enzymatic/Chemical Hydroesterification for Biodiesel Production. Domingues O; Remonatto D; Dos Santos LK; Galán JPM; Flumignan DL; de Paula AV Appl Biochem Biotechnol; 2022 Nov; 194(11):5419-5442. PubMed ID: 35789983 [TBL] [Abstract][Full Text] [Related]
19. Enhancing immobilization of Paitaid P; H-Kittikun A Prep Biochem Biotechnol; 2021; 51(6):536-549. PubMed ID: 33095111 [TBL] [Abstract][Full Text] [Related]
20. Magnetic Cross-Linked Enzyme Aggregates (mCLEAs) of Candida antarctica lipase: an efficient and stable biocatalyst for biodiesel synthesis. Cruz-Izquierdo Á; Picó EA; López C; Serra JL; Llama MJ PLoS One; 2014; 9(12):e115202. PubMed ID: 25551445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]