These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 39069187)
21. Quantifying the impact of climate extremes on salt mobilization and loading in non-developed, high-desert landscapes using SWAT. Henson E; Bailey RT J Contam Hydrol; 2023 Jan; 252():104107. PubMed ID: 36396527 [TBL] [Abstract][Full Text] [Related]
22. Risk assessment for tailings dams in Brumadinho of Brazil using InSAR time series approach. Du Z; Ge L; Ng AH; Zhu Q; Horgan FG; Zhang Q Sci Total Environ; 2020 May; 717():137125. PubMed ID: 32062261 [TBL] [Abstract][Full Text] [Related]
23. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China. Liu R; Liu J; Zhang Z; Borthwick A; Zhang K Int J Environ Res Public Health; 2015 Dec; 12(12):15269-84. PubMed ID: 26633450 [TBL] [Abstract][Full Text] [Related]
24. Heavy metals in iron ore tailings and floodplain soils affected by the Samarco dam collapse in Brazil. Davila RB; Fontes MPF; Pacheco AA; Ferreira MDS Sci Total Environ; 2020 Mar; 709():136151. PubMed ID: 31887517 [TBL] [Abstract][Full Text] [Related]
25. Attenuation of water contamination in the Paraopeba River after the collapse of B1 tailings dam: Natural wash-off and dredging contributions. Terêncio DPS; Pacheco FAL; do Valle Junior RF; de Melo Silva MMAP; Pissarra TCT; de Melo MC; Valera CA; Fernandes LFS Sci Total Environ; 2024 Aug; 937():173407. PubMed ID: 38797427 [TBL] [Abstract][Full Text] [Related]
26. Integrating reverse osmosis to a conventional river water treatment plant as a strategy to produce drinking water after mining dam rupture events: a case study. Moreira VR; Moser PB; Guimarães RN; Xavier C; Fidelis C; Silva AFR; Grossi LB; Faria CV; Santos LVS; Amaral MCS Environ Technol; 2024 Mar; ():1-12. PubMed ID: 38449387 [TBL] [Abstract][Full Text] [Related]
27. Tailings dams: Assessing the long-term erosional stability of valley fill designs. Hancock GR; Coulthard TJ Sci Total Environ; 2022 Nov; 849():157692. PubMed ID: 35908711 [TBL] [Abstract][Full Text] [Related]
28. Evaluating the contribution of subsurface drainage to watershed water yield using SWAT+ with groundwater modeling. Bailey RT; Bieger K; Flores L; Tomer M Sci Total Environ; 2022 Jan; 802():149962. PubMed ID: 34781586 [TBL] [Abstract][Full Text] [Related]
29. Potentially toxic elements in iron mine tailings: Effects of reducing soil pH on available concentrations of toxic elements. da Silva APV; Silva AO; Lima FRD; Benedet L; Franco AJ; Souza JK; Ribeiro Júnior AC; Batista ÉR; Inda AV; Curi N; Guilherme LRG; Carneiro MAC Environ Res; 2022 Dec; 215(Pt 2):114321. PubMed ID: 36222244 [TBL] [Abstract][Full Text] [Related]
30. Environmental and socioeconomic assessment of impacts by mining activities-a case study in the Certej River catchment, Western Carpathians, Romania. Zobrist J; Sima M; Dogaru D; Senila M; Yang H; Popescu C; Roman C; Bela A; Frei L; Dold B; Balteanu D Environ Sci Pollut Res Int; 2009 Aug; 16 Suppl 1():S14-26. PubMed ID: 19159960 [TBL] [Abstract][Full Text] [Related]
31. Influence of Fundão Tailings Dam Breach on Water Quality in the Doce River Watershed. da Cunha Richard E; de Aguiar Duarte H; Calderucio Duque Estrada G; Bechtold JP; Gusso Maioli B; Araujo de Freitas AH; Elizabeth Warner K; Melges Figueiredo LH Integr Environ Assess Manag; 2020 Sep; 16(5):583-595. PubMed ID: 32648998 [TBL] [Abstract][Full Text] [Related]
32. Assessment of vegetation establishment on tailings dam at an iron ore mining site of suburban Beijing, China, 7 years after reclamation with contrasting site treatment methods. Yan D; Zhao F; Sun OJ Environ Manage; 2013 Sep; 52(3):748-57. PubMed ID: 23811774 [TBL] [Abstract][Full Text] [Related]
33. A geochemical weathering profile of a fine ash tailings dam and its impact on the underlying aquifers. Zielke-Olivier JSDR; Vermeulen PD J Environ Manage; 2019 Jul; 242():162-170. PubMed ID: 31029893 [TBL] [Abstract][Full Text] [Related]
34. Exploring a new approach for assessing the fate and behavior of the tailings released by the Brumadinho dam collapse (Minas Gerais, Brazil). Kobayashi H; Garnier J; Mulholland DS; Quantin C; Haurine F; Tonha M; Joko C; Olivetti D; Freydier R; Seyler P; Martinez JM; Roig HL J Hazard Mater; 2023 Apr; 448():130828. PubMed ID: 36731315 [TBL] [Abstract][Full Text] [Related]
35. Historical and organizational sources of Córrego do Feijão dam disaster. de Almeida IM; Filho JMJ; Vilela RAG Rev Bras Med Trab; 2019; 17(1):13-20. PubMed ID: 32270099 [TBL] [Abstract][Full Text] [Related]
36. Groundwater pollution on the Zambian Copperbelt: deciphering the source and the risk. von der Heyden CJ; New MG Sci Total Environ; 2004 Jul; 327(1-3):17-30. PubMed ID: 15172568 [TBL] [Abstract][Full Text] [Related]
37. A method for assessing the long-term integrity of tailings dams. Hancock GR Sci Total Environ; 2021 Jul; 779():146083. PubMed ID: 33735655 [TBL] [Abstract][Full Text] [Related]
38. A predictive assessment of the uranium ore tailings impact on surface water contamination: Case study of the city of Kamianske, Ukraine. Rudakov D; Pikarenia D; Orlinska O; Rudakov L; Hapich H J Environ Radioact; 2023 Nov; 268-269():107246. PubMed ID: 37506478 [TBL] [Abstract][Full Text] [Related]
39. Occurrence and abundance of clinically relevant antimicrobial resistance genes in environmental samples after the Brumadinho dam disaster, Brazil. Furlan JPR; Dos Santos LDR; Moretto JAS; Ramos MS; Gallo IFL; Alves GAD; Paulelli AC; Rocha CCS; Cesila CA; Gallimberti M; Devóz PP; Júnior FB; Stehling EG Sci Total Environ; 2020 Jul; 726():138100. PubMed ID: 32334350 [TBL] [Abstract][Full Text] [Related]
40. Soil moisture dynamics modelling of a reclaimed upland in the early post-construction period. Sutton OF; Price JS Sci Total Environ; 2020 May; 718():134628. PubMed ID: 31848060 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]