These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 39069187)
41. Modelling the hydrologic effects of vegetation growth on the long-term trajectory of a reclamation watershed. Sutton OF; Price JS Sci Total Environ; 2020 Sep; 734():139323. PubMed ID: 32464377 [TBL] [Abstract][Full Text] [Related]
42. Assessing the long-term effects of land use changes on runoff patterns and food production in a large lake watershed with policy implications. Sun Z; Lotz T; Chang NB J Environ Manage; 2017 Dec; 204(Pt 1):92-101. PubMed ID: 28863340 [TBL] [Abstract][Full Text] [Related]
43. Impact of land cover and land use change on runoff characteristics. Sajikumar N; Remya RS J Environ Manage; 2015 Sep; 161():460-468. PubMed ID: 25575849 [TBL] [Abstract][Full Text] [Related]
44. Molecular diversity of arbuscular mycorrhizal fungal communities across the gradient of alkaline Fe ore tailings, revegetated waste rock to natural soil sites. Wu S; You F; Wu Z; Bond P; Hall M; Huang L Environ Sci Pollut Res Int; 2020 Apr; 27(11):11968-11979. PubMed ID: 31983001 [TBL] [Abstract][Full Text] [Related]
45. Application of remote sensing in environmental impact assessment: a case study of dam rupture in Brumadinho, Minas Gerais, Brazil. Souza APD; Teodoro PE; Teodoro LPR; Taveira AC; de Oliveira-Júnior JF; Della-Silva JL; Baio FHR; Lima M; da Silva Junior CA Environ Monit Assess; 2021 Aug; 193(9):606. PubMed ID: 34453609 [TBL] [Abstract][Full Text] [Related]
46. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin. Narula KK; Gosain AK Sci Total Environ; 2013 Dec; 468-469 Suppl():S102-16. PubMed ID: 23452999 [TBL] [Abstract][Full Text] [Related]
47. Dynamic response of thickened tailings in shaking table testing. Alshawmar F; Fall M Int J Geoeng; 2021; 12(1):28. PubMed ID: 34804627 [TBL] [Abstract][Full Text] [Related]
48. Assessment of land use/ land cover change derived catchment hydrologic response: An integrated parsimonious hydrological modeling and alteration analysis based approach. Dash SS; Naik B; Kashyap PS J Environ Manage; 2024 Apr; 356():120637. PubMed ID: 38520859 [TBL] [Abstract][Full Text] [Related]
49. Remediation of a marine shore tailings deposit and the importance of water-rock interaction on element cycling in the coastal aquifer. Dold B; Diaby N; Spangenberg JE Environ Sci Technol; 2011 Jun; 45(11):4876-83. PubMed ID: 21563818 [TBL] [Abstract][Full Text] [Related]
50. Comparative performance of cover systems to prevent acid mine drainage from pre-oxidized tailings: A numerical hydro-geochemical assessment. Pabst T; Bussière B; Aubertin M; Molson J J Contam Hydrol; 2018 Jul; 214():39-53. PubMed ID: 29861334 [TBL] [Abstract][Full Text] [Related]
51. Impact of rainfed agriculture on spatio-temporal patterns of water balance and the interaction between groundwater and surface water in sub-humid plains. Guevara-Ochoa C; Sierra AM; Vives L; Barrios M Sci Total Environ; 2024 Feb; 912():169247. PubMed ID: 38081422 [TBL] [Abstract][Full Text] [Related]
52. Iron ore tailings valorization through separate characterization and upgradation of different tailings streams of an Iranian iron ore processing plant. Ghasemi S; Behnamfard A; Arjmand R Environ Sci Pollut Res Int; 2023 Nov; 30(54):115448-115460. PubMed ID: 37884724 [TBL] [Abstract][Full Text] [Related]
53. SBAS-InSAR Based Deformation Monitoring of Tailings Dam: The Case Study of the Dexing Copper Mine No.4 Tailings Dam. Xie W; Wu J; Gao H; Chen J; He Y Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139553 [TBL] [Abstract][Full Text] [Related]
54. Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining. Mestre NC; Rocha TL; Canals M; Cardoso C; Danovaro R; Dell'Anno A; Gambi C; Regoli F; Sanchez-Vidal A; Bebianno MJ Environ Pollut; 2017 Sep; 228():169-178. PubMed ID: 28531798 [TBL] [Abstract][Full Text] [Related]
55. The impact of lenses on the seepage failure of tailings dam. Zhang H; Li Q; Wang J; Fu B PLoS One; 2024; 19(8):e0305425. PubMed ID: 39110749 [TBL] [Abstract][Full Text] [Related]
56. The application of SWAT+ model to quantify the impacts of sensitive LULC changes on water balance in Guder catchment, Oromia, Ethiopia. Tumsa BC; Kenea G; Tola B Heliyon; 2022 Dec; 8(12):e12569. PubMed ID: 36643310 [TBL] [Abstract][Full Text] [Related]
57. Severe impacts of the Brumadinho dam failure (Minas Gerais, Brazil) on the water quality of the Paraopeba River. Thompson F; de Oliveira BC; Cordeiro MC; Masi BP; Rangel TP; Paz P; Freitas T; Lopes G; Silva BS; S Cabral A; Soares M; Lacerda D; Dos Santos Vergilio C; Lopes-Ferreira M; Lima C; Thompson C; de Rezende CE Sci Total Environ; 2020 Feb; 705():135914. PubMed ID: 31838417 [TBL] [Abstract][Full Text] [Related]
59. Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Luo Y; Ficklin DL; Liu X; Zhang M Sci Total Environ; 2013 Apr; 450-451():72-82. PubMed ID: 23467178 [TBL] [Abstract][Full Text] [Related]
60. Modelling the impact of land use management on water resources in a tropical inland valley catchment of central Uganda, East Africa. Gabiri G; Leemhuis C; Diekkrüger B; Näschen K; Steinbach S; Thonfeld F Sci Total Environ; 2019 Feb; 653():1052-1066. PubMed ID: 30759546 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]