These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 39070086)
1. Simultaneous Measurement of Thermal Conductivity and Volumetric Heat Capacity of Thermal Interface Materials Using Thermoreflectance. Abdallah Z; Pomeroy JW; Blasakis N; Baltopoulos A; Kuball M ACS Appl Electron Mater; 2024 Jul; 6(7):5183-5189. PubMed ID: 39070086 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method. Liu J; Zhu J; Tian M; Gu X; Schmidt A; Yang R Rev Sci Instrum; 2013 Mar; 84(3):034902. PubMed ID: 23556838 [TBL] [Abstract][Full Text] [Related]
3. In situ Thermoreflectance Characterization of Thermal Resistance in Multilayer Electronics Packaging. Poopakdee N; Abdallah Z; Pomeroy JW; Kuball M ACS Appl Electron Mater; 2022 Apr; 4(4):1558-1566. PubMed ID: 35573030 [TBL] [Abstract][Full Text] [Related]
5. Thermal Characterization of Metal-Diamond Composite Heat Spreaders Using Low-Frequency-Domain Thermoreflectance. Abdallah Z; Pomeroy JW; Neubauer E; Kuball M ACS Appl Electron Mater; 2023 Sep; 5(9):5017-5024. PubMed ID: 37779888 [TBL] [Abstract][Full Text] [Related]
6. Thermal conductivity measurements of non-metals via combined time- and frequency-domain thermoreflectance without a metal film transducer. Wang L; Cheaito R; Braun JL; Giri A; Hopkins PE Rev Sci Instrum; 2016 Sep; 87(9):094902. PubMed ID: 27782592 [TBL] [Abstract][Full Text] [Related]
7. A high-precision apparatus for the characterization of thermal interface materials. Kempers R; Kolodner P; Lyons A; Robinson AJ Rev Sci Instrum; 2009 Sep; 80(9):095111. PubMed ID: 19791968 [TBL] [Abstract][Full Text] [Related]
8. Uncertainty analysis of thermoreflectance measurements. Yang J; Ziade E; Schmidt AJ Rev Sci Instrum; 2016 Jan; 87(1):014901. PubMed ID: 26827342 [TBL] [Abstract][Full Text] [Related]
9. A frequency-domain thermoreflectance method for the characterization of thermal properties. Schmidt AJ; Cheaito R; Chiesa M Rev Sci Instrum; 2009 Sep; 80(9):094901. PubMed ID: 19791955 [TBL] [Abstract][Full Text] [Related]
10. Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance. Cheng Z; Bougher T; Bai T; Wang SY; Li C; Yates L; Foley BM; Goorsky M; Cola BA; Faili F; Graham S ACS Appl Mater Interfaces; 2018 Feb; 10(5):4808-4815. PubMed ID: 29328632 [TBL] [Abstract][Full Text] [Related]
11. Frequency-domain probe beam deflection method for measurement of thermal conductivity of materials on micron length scale. Sun J; Lv G; Cahill DG Rev Sci Instrum; 2023 Jan; 94(1):014903. PubMed ID: 36725548 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous measurement of in-plane and through-plane thermal conductivity using beam-offset frequency domain thermoreflectance. Rodin D; Yee SK Rev Sci Instrum; 2017 Jan; 88(1):014902. PubMed ID: 28147667 [TBL] [Abstract][Full Text] [Related]
13. Accurate measurement of in-plane thermal conductivity of layered materials without metal film transducer using frequency domain thermoreflectance. Qian X; Ding Z; Shin J; Schmidt AJ; Chen G Rev Sci Instrum; 2020 Jun; 91(6):064903. PubMed ID: 32611038 [TBL] [Abstract][Full Text] [Related]
14. Ultralow Interfacial Thermal Resistance of Graphene Thermal Interface Materials with Surface Metal Liquefaction. Dai W; Ren XJ; Yan Q; Wang S; Yang M; Lv L; Ying J; Chen L; Tao P; Sun L; Xue C; Yu J; Song C; Nishimura K; Jiang N; Lin CT Nanomicro Lett; 2022 Dec; 15(1):9. PubMed ID: 36484932 [TBL] [Abstract][Full Text] [Related]
15. High Thermal Boundary Conductance across Bonded Heterogeneous GaN-SiC Interfaces. Mu F; Cheng Z; Shi J; Shin S; Xu B; Shiomi J; Graham S; Suga T ACS Appl Mater Interfaces; 2019 Sep; 11(36):33428-33434. PubMed ID: 31408316 [TBL] [Abstract][Full Text] [Related]
16. Quantitative Characterization of the Anisotropic Thermal Properties of Encapsulated Two-Dimensional MoS Jiang S; Lebedev D; Andrews L; Gish JT; Song TW; Hersam MC; Balogun O ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36753465 [TBL] [Abstract][Full Text] [Related]
17. Probing Anisotropic Thermal Conductivity of Transition Metal Dichalcogenides MX Jiang P; Qian X; Gu X; Yang R Adv Mater; 2017 Sep; 29(36):. PubMed ID: 28727182 [TBL] [Abstract][Full Text] [Related]
19. Temperature Dependent Thermal Conductivity and Thermal Interface Resistance of Pentacene Thin Films with Varying Morphology. Epstein J; Ong WL; Bettinger CJ; Malen JA ACS Appl Mater Interfaces; 2016 Jul; 8(29):19168-74. PubMed ID: 27391107 [TBL] [Abstract][Full Text] [Related]
20. High Thermal Conductivity of Sandwich-Structured Flexible Thermal Interface Materials. Jing L; Cheng R; Tasoglu M; Wang Z; Wang Q; Zhai H; Shen S; Cohen-Karni T; Garg R; Lee I Small; 2023 Mar; 19(11):e2207015. PubMed ID: 36642828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]