These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 39070227)
1. Development and Validation of an ICU-Venous Thromboembolism Prediction Model Using Machine Learning Approaches: A Multicenter Study. Jin J; Lu J; Su X; Xiong Y; Ma S; Kong Y; Xu H Int J Gen Med; 2024; 17():3279-3292. PubMed ID: 39070227 [TBL] [Abstract][Full Text] [Related]
2. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms]. Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626 [TBL] [Abstract][Full Text] [Related]
3. Development and validation of machine learning models for postoperative venous thromboembolism prediction in colorectal cancer inpatients: a retrospective study. Qin L; Liang Z; Xie J; Ye G; Guan P; Huang Y; Li X J Gastrointest Oncol; 2023 Feb; 14(1):220-232. PubMed ID: 36915444 [TBL] [Abstract][Full Text] [Related]
4. Ten-Year Multicenter Retrospective Study Utilizing Machine Learning Algorithms to Identify Patients at High Risk of Venous Thromboembolism After Radical Gastrectomy. Liu Y; Song C; Tian Z; Shen W Int J Gen Med; 2023; 16():1909-1925. PubMed ID: 37228741 [TBL] [Abstract][Full Text] [Related]
5. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models. Ye Z; An S; Gao Y; Xie E; Zhao X; Guo Z; Li Y; Shen N; Ren J; Zheng J Eur J Med Res; 2023 Jan; 28(1):33. PubMed ID: 36653875 [TBL] [Abstract][Full Text] [Related]
6. Prediction and feature selection of low birth weight using machine learning algorithms. Reza TB; Salma N J Health Popul Nutr; 2024 Oct; 43(1):157. PubMed ID: 39396025 [TBL] [Abstract][Full Text] [Related]
7. Predictive model and risk analysis for peripheral vascular disease in type 2 diabetes mellitus patients using machine learning and shapley additive explanation. Liu L; Bi B; Cao L; Gui M; Ju F Front Endocrinol (Lausanne); 2024; 15():1320335. PubMed ID: 38481447 [TBL] [Abstract][Full Text] [Related]
8. Interpretable machine learning models for predicting venous thromboembolism in the intensive care unit: an analysis based on data from 207 centers. Guan C; Ma F; Chang S; Zhang J Crit Care; 2023 Oct; 27(1):406. PubMed ID: 37875995 [TBL] [Abstract][Full Text] [Related]
9. Establishment and validation of a heart failure risk prediction model for elderly patients after coronary rotational atherectomy based on machine learning. Zhang L; Zhou X; Cao J PeerJ; 2024; 12():e16867. PubMed ID: 38313005 [TBL] [Abstract][Full Text] [Related]
10. [Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning]. Zhu M; Hu C; He Y; Qian Y; Tang S; Hu Q; Hao C Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Jul; 35(7):696-701. PubMed ID: 37545445 [TBL] [Abstract][Full Text] [Related]
11. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
12. Interpretable machine learning for allergic rhinitis prediction among preschool children in Urumqi, China. Wang J; Yang Y; Gong X Sci Rep; 2024 Sep; 14(1):22281. PubMed ID: 39333659 [TBL] [Abstract][Full Text] [Related]
13. Clinical decision support systems for 3-month mortality in elderly patients admitted to ICU with ischemic stroke using interpretable machine learning. Huang J; Liu X; Jin W Digit Health; 2024; 10():20552076241280126. PubMed ID: 39314817 [TBL] [Abstract][Full Text] [Related]
14. A Risk Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care Facilities: Machine Learning Study. Wang J; Chen H; Wang H; Liu W; Peng D; Zhao Q; Xiao M J Med Internet Res; 2023 Apr; 25():e43815. PubMed ID: 37023416 [TBL] [Abstract][Full Text] [Related]
15. Application of machine learning model in predicting the likelihood of blood transfusion after hip fracture surgery. Chen X; Pan J; Li Y; Tang R Aging Clin Exp Res; 2023 Nov; 35(11):2643-2656. PubMed ID: 37733228 [TBL] [Abstract][Full Text] [Related]
16. Development and Validation of Unplanned Extubation Prediction Models Using Intensive Care Unit Data: Retrospective, Comparative, Machine Learning Study. Hur S; Min JY; Yoo J; Kim K; Chung CR; Dykes PC; Cha WC J Med Internet Res; 2021 Aug; 23(8):e23508. PubMed ID: 34382940 [TBL] [Abstract][Full Text] [Related]
17. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning]. Lin Y; Wu JY; Lin K; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862 [TBL] [Abstract][Full Text] [Related]
18. Prediction of 28-Day All-Cause Mortality in Heart Failure Patients with Clostridioides difficile Infection Using Machine Learning Models: Evidence from the MIMIC-IV Database. Shi C; Jie Q; Zhang H; Zhang X; Chu W; Chen C; Zhang Q; Hu Z Cardiology; 2024 Aug; ():1. PubMed ID: 39154641 [TBL] [Abstract][Full Text] [Related]
19. Interpretable machine learning model for early prediction of delirium in elderly patients following intensive care unit admission: a derivation and validation study. Tang D; Ma C; Xu Y Front Med (Lausanne); 2024; 11():1399848. PubMed ID: 38828233 [TBL] [Abstract][Full Text] [Related]
20. Machine learning constructs a diagnostic prediction model for calculous pyonephrosis. Yang B; Zhong J; Yang Y; Xu J; Liu H; Liu J Urolithiasis; 2024 Jun; 52(1):96. PubMed ID: 38896174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]