These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Phase Separation in Mixtures of Prion-Like Low Complexity Domains is Driven by the Interplay of Homotypic and Heterotypic Interactions. Farag M; Borcherds WM; Bremer A; Mittag T; Pappu RV bioRxiv; 2023 Mar; ():. PubMed ID: 36993212 [TBL] [Abstract][Full Text] [Related]
4. Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently. Sanchez-Burgos I; Herriott L; Collepardo-Guevara R; Espinosa JR Biophys J; 2023 Jul; 122(14):2973-2987. PubMed ID: 36883003 [TBL] [Abstract][Full Text] [Related]
5. RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins. Sanchez-Burgos I; Espinosa JR; Joseph JA; Collepardo-Guevara R PLoS Comput Biol; 2022 Feb; 18(2):e1009810. PubMed ID: 35108264 [TBL] [Abstract][Full Text] [Related]
6. Sequence-encoded and composition-dependent protein-RNA interactions control multiphasic condensate morphologies. Kaur T; Raju M; Alshareedah I; Davis RB; Potoyan DA; Banerjee PR Nat Commun; 2021 Feb; 12(1):872. PubMed ID: 33558506 [TBL] [Abstract][Full Text] [Related]
8. The liquid-to-solid transition of FUS is promoted by the condensate surface. Shen Y; Chen A; Wang W; Shen Y; Ruggeri FS; Aime S; Wang Z; Qamar S; Espinosa JR; Garaizar A; St George-Hyslop P; Collepardo-Guevara R; Weitz DA; Vigolo D; Knowles TPJ Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2301366120. PubMed ID: 37549257 [TBL] [Abstract][Full Text] [Related]
9. Heterotypic electrostatic interactions control complex phase separation of tau and prion into multiphasic condensates and co-aggregates. Rai SK; Khanna R; Avni A; Mukhopadhyay S Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2216338120. PubMed ID: 36595668 [TBL] [Abstract][Full Text] [Related]
10. An evolutionarily nascent architecture underlying the formation and emergence of biomolecular condensates. Jaberi-Lashkari N; Lee B; Aryan F; Calo E Cell Rep; 2023 Aug; 42(8):112955. PubMed ID: 37586369 [TBL] [Abstract][Full Text] [Related]
11. Measurement of Protein and Nucleic Acid Diffusion Coefficients Within Biomolecular Condensates Using In-Droplet Fluorescence Correlation Spectroscopy. Alshareedah I; Banerjee PR Methods Mol Biol; 2023; 2563():199-213. PubMed ID: 36227474 [TBL] [Abstract][Full Text] [Related]
12. Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions. Farag M; Borcherds WM; Bremer A; Mittag T; Pappu RV Nat Commun; 2023 Sep; 14(1):5527. PubMed ID: 37684240 [TBL] [Abstract][Full Text] [Related]
13. Different states and the associated fates of biomolecular condensates. Ranganathan S; Liu J; Shakhnovich E Essays Biochem; 2022 Dec; 66(7):849-862. PubMed ID: 36350032 [TBL] [Abstract][Full Text] [Related]
18. ATP-induced crosslinking of a biomolecular condensate. Coupe S; Fakhri N bioRxiv; 2023 Apr; ():. PubMed ID: 37131735 [TBL] [Abstract][Full Text] [Related]
19. RNA and condensates: Disease implications and therapeutic opportunities. Han TW; Portz B; Young RA; Boija A; Klein IA Cell Chem Biol; 2024 Sep; 31(9):1593-1609. PubMed ID: 39303698 [TBL] [Abstract][Full Text] [Related]
20. Valency and Binding Affinity Variations Can Regulate the Multilayered Organization of Protein Condensates with Many Components. Sanchez-Burgos I; Espinosa JR; Joseph JA; Collepardo-Guevara R Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33672806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]