These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 39070659)

  • 1. Biomolecular condensates can enhance pathological RNA clustering.
    Banerjee P; Mahendran TS; Wadsworth G; Singh A
    Res Sq; 2024 Jul; ():. PubMed ID: 39070659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomolecular Condensates Can Enhance Pathological RNA Clustering.
    Mahendran TS; Wadsworth GM; Singh A; Banerjee PR
    bioRxiv; 2024 Jun; ():. PubMed ID: 38915678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase Separation in Mixtures of Prion-Like Low Complexity Domains is Driven by the Interplay of Homotypic and Heterotypic Interactions.
    Farag M; Borcherds WM; Bremer A; Mittag T; Pappu RV
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently.
    Sanchez-Burgos I; Herriott L; Collepardo-Guevara R; Espinosa JR
    Biophys J; 2023 Jul; 122(14):2973-2987. PubMed ID: 36883003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins.
    Sanchez-Burgos I; Espinosa JR; Joseph JA; Collepardo-Guevara R
    PLoS Comput Biol; 2022 Feb; 18(2):e1009810. PubMed ID: 35108264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence-encoded and composition-dependent protein-RNA interactions control multiphasic condensate morphologies.
    Kaur T; Raju M; Alshareedah I; Davis RB; Potoyan DA; Banerjee PR
    Nat Commun; 2021 Feb; 12(1):872. PubMed ID: 33558506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The liquid-to-solid transition of FUS is promoted by the condensate surface.
    Shen Y; Chen A; Wang W; Shen Y; Ruggeri FS; Aime S; Wang Z; Qamar S; Espinosa JR; Garaizar A; St George-Hyslop P; Collepardo-Guevara R; Weitz DA; Vigolo D; Knowles TPJ
    Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2301366120. PubMed ID: 37549257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterotypic electrostatic interactions control complex phase separation of tau and prion into multiphasic condensates and co-aggregates.
    Rai SK; Khanna R; Avni A; Mukhopadhyay S
    Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2216338120. PubMed ID: 36595668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evolutionarily nascent architecture underlying the formation and emergence of biomolecular condensates.
    Jaberi-Lashkari N; Lee B; Aryan F; Calo E
    Cell Rep; 2023 Aug; 42(8):112955. PubMed ID: 37586369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of Protein and Nucleic Acid Diffusion Coefficients Within Biomolecular Condensates Using In-Droplet Fluorescence Correlation Spectroscopy.
    Alshareedah I; Banerjee PR
    Methods Mol Biol; 2023; 2563():199-213. PubMed ID: 36227474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions.
    Farag M; Borcherds WM; Bremer A; Mittag T; Pappu RV
    Nat Commun; 2023 Sep; 14(1):5527. PubMed ID: 37684240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different states and the associated fates of biomolecular condensates.
    Ranganathan S; Liu J; Shakhnovich E
    Essays Biochem; 2022 Dec; 66(7):849-862. PubMed ID: 36350032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composition-dependent thermodynamics of intracellular phase separation.
    Riback JA; Zhu L; Ferrolino MC; Tolbert M; Mitrea DM; Sanders DW; Wei MT; Kriwacki RW; Brangwynne CP
    Nature; 2020 May; 581(7807):209-214. PubMed ID: 32405004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aging can transform single-component protein condensates into multiphase architectures.
    Garaizar A; Espinosa JR; Joseph JA; Krainer G; Shen Y; Knowles TPJ; Collepardo-Guevara R
    Proc Natl Acad Sci U S A; 2022 Jun; 119(26):e2119800119. PubMed ID: 35727989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase separation and pathologic transitions of RNP condensates in neurons: implications for amyotrophic lateral sclerosis, frontotemporal dementia and other neurodegenerative disorders.
    Naskar A; Nayak A; Salaikumaran MR; Vishal SS; Gopal PP
    Front Mol Neurosci; 2023; 16():1242925. PubMed ID: 37720552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition.
    Shen Y; Ruggeri FS; Vigolo D; Kamada A; Qamar S; Levin A; Iserman C; Alberti S; George-Hyslop PS; Knowles TPJ
    Nat Nanotechnol; 2020 Oct; 15(10):841-847. PubMed ID: 32661370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP-induced crosslinking of a biomolecular condensate.
    Coupe S; Fakhri N
    bioRxiv; 2023 Apr; ():. PubMed ID: 37131735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Valency and Binding Affinity Variations Can Regulate the Multilayered Organization of Protein Condensates with Many Components.
    Sanchez-Burgos I; Espinosa JR; Joseph JA; Collepardo-Guevara R
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33672806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase Separation in Mixtures of Prion-Like Low Complexity Domains is Driven by the Interplay of Homotypic and Heterotypic Interactions.
    Pappu R; Farag M; Borcherds W; Bremer A; Mittag T
    Res Sq; 2023 May; ():. PubMed ID: 37205474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein Condensate Atlas from predictive models of heteromolecular condensate composition.
    Saar KL; Scrutton RM; Bloznelyte K; Morgunov AS; Good LL; Lee AA; Teichmann SA; Knowles TPJ
    Nat Commun; 2024 Jul; 15(1):5418. PubMed ID: 38987300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.