These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 39070659)

  • 21. RNA contributions to the form and function of biomolecular condensates.
    Roden C; Gladfelter AS
    Nat Rev Mol Cell Biol; 2021 Mar; 22(3):183-195. PubMed ID: 32632317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuronal biomolecular condensates and their implications in neurodegenerative diseases.
    Nam J; Gwon Y
    Front Aging Neurosci; 2023; 15():1145420. PubMed ID: 37065458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. More than a bystander: RNAs specify multifaceted behaviors of liquid-liquid phase-separated biomolecular condensates.
    Zheng H; Zhang H
    Bioessays; 2024 Mar; 46(3):e2300203. PubMed ID: 38175843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-Dependent Material Properties of Aging Biomolecular Condensates from Different Viscoelasticity Measurements in Molecular Dynamics Simulations.
    Tejedor AR; Collepardo-Guevara R; Ramírez J; Espinosa JR
    J Phys Chem B; 2023 May; 127(20):4441-4459. PubMed ID: 37194953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A working model for condensate RNA-binding proteins as matchmakers for protein complex assembly.
    Chen X; Mayr C
    RNA; 2022 Jan; 28(1):76-87. PubMed ID: 34706978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sodium ion influx regulates liquidity of biomolecular condensates in hyperosmotic stress response.
    Morishita K; Watanabe K; Naguro I; Ichijo H
    Cell Rep; 2023 Apr; 42(4):112315. PubMed ID: 37019112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HspB8 prevents aberrant phase transitions of FUS by chaperoning its folded RNA-binding domain.
    Boczek EE; Fürsch J; Niedermeier ML; Jawerth L; Jahnel M; Ruer-Gruß M; Kammer KM; Heid P; Mediani L; Wang J; Yan X; Pozniakovski A; Poser I; Mateju D; Hubatsch L; Carra S; Alberti S; Hyman AA; Stengel F
    Elife; 2021 Sep; 10():. PubMed ID: 34487489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it.
    Tejedor AR; Sanchez-Burgos I; Estevez-Espinosa M; Garaizar A; Collepardo-Guevara R; Ramirez J; Espinosa JR
    Nat Commun; 2022 Sep; 13(1):5717. PubMed ID: 36175408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics.
    Conti BA; Oppikofer M
    Trends Pharmacol Sci; 2022 Oct; 43(10):820-837. PubMed ID: 36028355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions.
    Choi JM; Holehouse AS; Pappu RV
    Annu Rev Biophys; 2020 May; 49():107-133. PubMed ID: 32004090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Different Low-complexity Regions of SFPQ Play Distinct Roles in the Formation of Biomolecular Condensates.
    Marshall AC; Cummins J; Kobelke S; Zhu T; Widagdo J; Anggono V; Hyman A; Fox AH; Bond CS; Lee M
    J Mol Biol; 2023 Dec; 435(24):168364. PubMed ID: 37952770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates.
    Welsh TJ; Krainer G; Espinosa JR; Joseph JA; Sridhar A; Jahnel M; Arter WE; Saar KL; Alberti S; Collepardo-Guevara R; Knowles TPJ
    Nano Lett; 2022 Jan; 22(2):612-621. PubMed ID: 35001622
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in
    Cabral SE; Otis JP; Mowry KL
    iScience; 2022 Aug; 25(8):104811. PubMed ID: 35982794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Specific protein-RNA interactions are mostly preserved in biomolecular condensates.
    de Vries T; Novakovic M; Ni Y; Smok I; Inghelram C; Bikaki M; Sarnowski CP; Han Y; Emmanouilidis L; Padroni G; Leitner A; Allain FH
    Sci Adv; 2024 Mar; 10(10):eadm7435. PubMed ID: 38446881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Asymmetric oligomerization state and sequence patterning can tune multiphase condensate miscibility.
    Rana U; Xu K; Narayanan A; Walls MT; Panagiotopoulos AZ; Avalos JL; Brangwynne CP
    Nat Chem; 2024 Jul; 16(7):1073-1082. PubMed ID: 38383656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A platform to induce and mature biomolecular condensates using chemicals and light.
    Hernandez-Candia CN; Brady BR; Harrison E; Tucker CL
    Nat Chem Biol; 2024 Apr; 20(4):452-462. PubMed ID: 38191942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ligand effects on phase separation of multivalent macromolecules.
    Ruff KM; Dar F; Pappu RV
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33653957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties.
    Boeynaems S; Holehouse AS; Weinhardt V; Kovacs D; Van Lindt J; Larabell C; Van Den Bosch L; Das R; Tompa PS; Pappu RV; Gitler AD
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7889-7898. PubMed ID: 30926670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?
    Forman-Kay JD; Ditlev JA; Nosella ML; Lee HO
    RNA; 2022 Jan; 28(1):36-47. PubMed ID: 34772786
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatiotemporal modulations in heterotypic condensates of prion and α-synuclein control phase transitions and amyloid conversion.
    Agarwal A; Arora L; Rai SK; Avni A; Mukhopadhyay S
    Nat Commun; 2022 Mar; 13(1):1154. PubMed ID: 35241680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.