These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 39070666)
1. Revolutionizing Nipah virus vaccinology: insights into subunit vaccine development strategies and immunological advances. Das T; Datta S; Sen A In Silico Pharmacol; 2024; 12(2):69. PubMed ID: 39070666 [TBL] [Abstract][Full Text] [Related]
2. An Immunoinformatic-Based In Silico Identification on the Creation of a Multiepitope-Based Vaccination Against the Nipah Virus. Kaur B; Karnwal A; Bansal A; Malik T Biomed Res Int; 2024; 2024():4066641. PubMed ID: 38962403 [TBL] [Abstract][Full Text] [Related]
3. Modeling mRNA-based vaccine YFV.E1988 against yellow fever virus E-protein using immuno-informatics and reverse vaccinology approach. Khan NT; Zinnia MA; Islam ABMMK J Biomol Struct Dyn; 2023 Mar; 41(5):1617-1638. PubMed ID: 34994279 [TBL] [Abstract][Full Text] [Related]
4. An integrated multi-pronged reverse vaccinology and biophysical approaches for identification of potential vaccine candidates against Nipah virus. Albutti A Saudi Pharm J; 2023 Dec; 31(12):101826. PubMed ID: 38028215 [TBL] [Abstract][Full Text] [Related]
5. An immunoinformatic approach for developing a multi-epitope subunit vaccine against Monkeypox virus. Nayak AK; Chakraborty A; Shukla S; Kumar N; Samanta S In Silico Pharmacol; 2024; 12(1):42. PubMed ID: 38746047 [TBL] [Abstract][Full Text] [Related]
6. Immunoinformatics and Reverse Vaccinology Driven Predication of a Multi-epitope Vaccine against Hussain Z; Hayat C; Shahab M; Sikandar R; Bibi H; Kamil A; Zheng G; Liang C Curr Pharm Des; 2023; 29(19):1504-1515. PubMed ID: 37073655 [TBL] [Abstract][Full Text] [Related]
7. Immunoinformatic-guided designing of multi-epitope vaccine construct against Brucella Suis 1300. Jalal K; Khan K; Uddin R Immunol Res; 2023 Apr; 71(2):247-266. PubMed ID: 36459272 [TBL] [Abstract][Full Text] [Related]
8. Epitope-Based Peptide Vaccine against Glycoprotein G of Nipah Mohammed AA; Shantier SW; Mustafa MI; Osman HK; Elmansi HE; Osman IA; Mohammed RA; Abdelrhman FA; Elnnewery ME; Yousif EM; Mustafa MM; Elfadol NM; Abdalla AI; Mahmoud E; Yagaub AA; Ahmed YA; Hassan MA J Immunol Res; 2020; 2020():2567957. PubMed ID: 32377531 [TBL] [Abstract][Full Text] [Related]
9. Multi-epitope vaccine design using in silico analysis of glycoprotein and nucleocapsid of NIPAH virus. Kumar A; Misra G; Mohandas S; Yadav PD PLoS One; 2024; 19(5):e0300507. PubMed ID: 38728300 [TBL] [Abstract][Full Text] [Related]
10. An Immunoinformatics Prediction of Novel Multi-Epitope Vaccines Candidate Against Surface Antigens of Nipah Virus. Rahman MM; Puspo JA; Adib AA; Hossain ME; Alam MM; Sultana S; Islam A; Klena JD; Montgomery JM; Satter SM; Shirin T; Rahman MZ Int J Pept Res Ther; 2022; 28(4):123. PubMed ID: 35761851 [TBL] [Abstract][Full Text] [Related]
11. Designing of a multi-epitope vaccine candidate against Nipah virus by Majee P; Jain N; Kumar A J Biomol Struct Dyn; 2021 Mar; 39(4):1461-1480. PubMed ID: 32093573 [TBL] [Abstract][Full Text] [Related]
12. Development of Multi-epitope Based Subunit Vaccine Against Crimean-Congo Hemorrhagic Fever Virus Using Reverse Vaccinology Approach. Imran MA; Islam MR; Saha A; Ferdousee S; Mishu MA; Ghosh A Int J Pept Res Ther; 2022; 28(4):124. PubMed ID: 35789799 [TBL] [Abstract][Full Text] [Related]
13. A comprehensive screening of the whole proteome of hantavirus and designing a multi-epitope subunit vaccine for cross-protection against hantavirus: Structural vaccinology and immunoinformatics study. Abdulla F; Nain Z; Hossain MM; Syed SB; Ahmed Khan MS; Adhikari UK Microb Pathog; 2021 Jan; 150():104705. PubMed ID: 33352214 [TBL] [Abstract][Full Text] [Related]
14. In silico design of an epitope-based vaccine against PspC in Streptococcus pneumoniae using reverse vaccinology. Nahian M; Shahab M; Mazumder L; Oliveira JIN; Banu TA; Sarkar MH; Goswami B; Habib A; Begum S; Akter S J Genet Eng Biotechnol; 2023 Dec; 21(1):166. PubMed ID: 38085389 [TBL] [Abstract][Full Text] [Related]
15. Exploring structural antigens of yellow fever virus to design multi-epitope subunit vaccine candidate by utilizing an immuno-informatics approach. Sura K; Rohilla H; Kumar D; Jakhar R; Ahlawat V; Kaushik D; Dangi M; Chhillar AK J Genet Eng Biotechnol; 2023 Dec; 21(1):161. PubMed ID: 38051433 [TBL] [Abstract][Full Text] [Related]
16. Immunoinformatics design of a novel epitope-based vaccine candidate against dengue virus. Fadaka AO; Sibuyi NRS; Martin DR; Goboza M; Klein A; Madiehe AM; Meyer M Sci Rep; 2021 Oct; 11(1):19707. PubMed ID: 34611250 [TBL] [Abstract][Full Text] [Related]
17. Prediction and identification of T cell epitopes of COVID-19 with balanced cytokine response for the development of peptide based vaccines. Medha ; Bhatt P; Priyanka ; Sharma M; Sharma S In Silico Pharmacol; 2021; 9(1):40. PubMed ID: 34221846 [TBL] [Abstract][Full Text] [Related]
18. Design of a multi-epitope vaccine against six Nocardia species based on reverse vaccinology combined with immunoinformatics. Zhu F; Tan C; Li C; Ma S; Wen H; Yang H; Rao M; Zhang P; Peng W; Cui Y; Chen J; Pan P Front Immunol; 2023; 14():1100188. PubMed ID: 36845087 [TBL] [Abstract][Full Text] [Related]
19. Employing an immunoinformatics approach revealed potent multi-epitope based subunit vaccine for lymphocytic choriomeningitis virus. Waqas M; Aziz S; Bushra A; Halim SA; Ali A; Ullah S; Khalid A; Abdalla AN; Khan A; Al-Harrasi A J Infect Public Health; 2023 Feb; 16(2):214-232. PubMed ID: 36603375 [TBL] [Abstract][Full Text] [Related]
20. Immunoinformatics-driven In silico vaccine design for Nipah virus (NPV): Integrating machine learning and computational epitope prediction. Shahab M; Iqbal MW; Ahmad A; Alshabrmi FM; Wei DQ; Khan A; Zheng G Comput Biol Med; 2024 Mar; 170():108056. PubMed ID: 38301512 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]