These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Condensates formed by prion-like low-complexity domains have small-world network structures and interfaces defined by expanded conformations. Farag M; Cohen SR; Borcherds WM; Bremer A; Mittag T; Pappu RV Nat Commun; 2022 Dec; 13(1):7722. PubMed ID: 36513655 [TBL] [Abstract][Full Text] [Related]
5. An Introduction to the Stickers-and-Spacers Framework as Applied to Biomolecular Condensates. Ginell GM; Holehouse AS Methods Mol Biol; 2023; 2563():95-116. PubMed ID: 36227469 [TBL] [Abstract][Full Text] [Related]
6. Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions. Choi JM; Holehouse AS; Pappu RV Annu Rev Biophys; 2020 May; 49():107-133. PubMed ID: 32004090 [TBL] [Abstract][Full Text] [Related]
7. LASSI: A lattice model for simulating phase transitions of multivalent proteins. Choi JM; Dar F; Pappu RV PLoS Comput Biol; 2019 Oct; 15(10):e1007028. PubMed ID: 31634364 [TBL] [Abstract][Full Text] [Related]
8. Ligand effects on phase separation of multivalent macromolecules. Ruff KM; Dar F; Pappu RV Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33653957 [TBL] [Abstract][Full Text] [Related]
9. Phase separation in amino acid mixtures is governed by composition. De Sancho D Biophys J; 2022 Nov; 121(21):4119-4127. PubMed ID: 36181270 [TBL] [Abstract][Full Text] [Related]
11. Peptide-Based Biomimetic Condensates via Liquid-Liquid Phase Separation as Biomedical Delivery Vehicles. Song S; Ivanov T; Yuan D; Wang J; da Silva LC; Xie J; Cao S Biomacromolecules; 2024 Sep; 25(9):5468-5488. PubMed ID: 39178343 [TBL] [Abstract][Full Text] [Related]
12. Designer Condensates: A Toolkit for the Biomolecular Architect. Hastings RL; Boeynaems S J Mol Biol; 2021 Jun; 433(12):166837. PubMed ID: 33539874 [TBL] [Abstract][Full Text] [Related]
13. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides. Alshareedah I; Moosa MM; Pham M; Potoyan DA; Banerjee PR Nat Commun; 2021 Nov; 12(1):6620. PubMed ID: 34785657 [TBL] [Abstract][Full Text] [Related]
14. Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates. Lin YH; Forman-Kay JD; Chan HS Biochemistry; 2018 May; 57(17):2499-2508. PubMed ID: 29509422 [TBL] [Abstract][Full Text] [Related]
15. Preserving condensate structure and composition by lowering sequence complexity. Sood A; Zhang B Biophys J; 2024 Jul; 123(13):1815-1826. PubMed ID: 38824391 [TBL] [Abstract][Full Text] [Related]
16. Sequence variations of phase-separating proteins and resources for studying biomolecular condensates. Guo G; Wang X; Zhang Y; Li T Acta Biochim Biophys Sin (Shanghai); 2023 Jul; 55(7):1119-1132. PubMed ID: 37464880 [TBL] [Abstract][Full Text] [Related]
17. Phase separation in biology and disease-a symposium report. Cable J; Brangwynne C; Seydoux G; Cowburn D; Pappu RV; CastaƱeda CA; Berchowitz LE; Chen Z; Jonikas M; Dernburg A; Mittag T; Fawzi NL Ann N Y Acad Sci; 2019 Sep; 1452(1):3-11. PubMed ID: 31199001 [TBL] [Abstract][Full Text] [Related]
19. Formation of Biomolecular Condensates in Bacteria by Tuning Protein Electrostatics. Yeong V; Werth EG; Brown LM; Obermeyer AC ACS Cent Sci; 2020 Dec; 6(12):2301-2310. PubMed ID: 33376791 [TBL] [Abstract][Full Text] [Related]
20. The stickers and spacers of Rubiscondensation: assembling the centrepiece of biophysical CO2-concentrating mechanisms. Ang WSL; How JA; How JB; Mueller-Cajar O J Exp Bot; 2023 Jan; 74(2):612-626. PubMed ID: 35903998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]