These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 39071561)
1. Forecasting of flash flood susceptibility mapping using random forest regression model and geographic information systems. Wahba M; Essam R; El-Rawy M; Al-Arifi N; Abdalla F; Elsadek WM Heliyon; 2024 Jul; 10(13):e33982. PubMed ID: 39071561 [TBL] [Abstract][Full Text] [Related]
2. Application of genetic algorithm in optimization parallel ensemble-based machine learning algorithms to flood susceptibility mapping using radar satellite imagery. Razavi-Termeh SV; Sadeghi-Niaraki A; Seo M; Choi SM Sci Total Environ; 2023 May; 873():162285. PubMed ID: 36801341 [TBL] [Abstract][Full Text] [Related]
3. Flood susceptibility mapping by best-worst and logistic regression methods in Mersin, Turkey. Özay B; Orhan O Environ Sci Pollut Res Int; 2023 Mar; 30(15):45151-45170. PubMed ID: 36702983 [TBL] [Abstract][Full Text] [Related]
4. A new approach based on biology-inspired metaheuristic algorithms in combination with random forest to enhance the flood susceptibility mapping. Razavi-Termeh SV; Sadeghi-Niaraki A; Choi SM J Environ Manage; 2023 Nov; 345():118790. PubMed ID: 37647734 [TBL] [Abstract][Full Text] [Related]
5. Advanced machine learning algorithms for flood susceptibility modeling - performance comparison: Red Sea, Egypt. Youssef AM; Pourghasemi HR; El-Haddad BA Environ Sci Pollut Res Int; 2022 Sep; 29(44):66768-66792. PubMed ID: 35508847 [TBL] [Abstract][Full Text] [Related]
6. Flood sensitivity assessment of super cities. Wang Z; Chen X; Qi Z; Cui C Sci Rep; 2023 Apr; 13(1):5582. PubMed ID: 37019887 [TBL] [Abstract][Full Text] [Related]
7. Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon Khosravi K; Pourghasemi HR; Chapi K; Bahri M Environ Monit Assess; 2016 Dec; 188(12):656. PubMed ID: 27826821 [TBL] [Abstract][Full Text] [Related]
8. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Hong H; Tsangaratos P; Ilia I; Liu J; Zhu AX; Chen W Sci Total Environ; 2018 Jun; 625():575-588. PubMed ID: 29291572 [TBL] [Abstract][Full Text] [Related]
9. Integration of hard and soft supervised machine learning for flood susceptibility mapping. Andaryani S; Nourani V; Haghighi AT; Keesstra S J Environ Manage; 2021 Aug; 291():112731. PubMed ID: 33962279 [TBL] [Abstract][Full Text] [Related]
10. Application of geographical information system-based analytical hierarchy process modeling for flood susceptibility mapping of Krishna District in Andhra Pradesh. Penki R; Basina SS; Tanniru SR Environ Sci Pollut Res Int; 2023 Sep; 30(44):99062-99075. PubMed ID: 36087179 [TBL] [Abstract][Full Text] [Related]
11. Assessment of vulnerability to flood risk in the Padma River Basin using hydro-morphometric modeling and flood susceptibility mapping. Abrar MF; Iman YE; Mustak MB; Pal SK Environ Monit Assess; 2024 Jun; 196(7):661. PubMed ID: 38918209 [TBL] [Abstract][Full Text] [Related]
12. Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. Wang Y; Hong H; Chen W; Li S; Panahi M; Khosravi K; Shirzadi A; Shahabi H; Panahi S; Costache R J Environ Manage; 2019 Oct; 247():712-729. PubMed ID: 31279803 [TBL] [Abstract][Full Text] [Related]
13. Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: A case study at the Putna river catchment of Romania. Costache R; Tien Bui D Sci Total Environ; 2019 Nov; 691():1098-1118. PubMed ID: 31466192 [TBL] [Abstract][Full Text] [Related]
14. Enhancing flood susceptibility modeling using multi-temporal SAR images, CHIRPS data, and hybrid machine learning algorithms. Riazi M; Khosravi K; Shahedi K; Ahmad S; Jun C; Bateni SM; Kazakis N Sci Total Environ; 2023 May; 871():162066. PubMed ID: 36773901 [TBL] [Abstract][Full Text] [Related]
15. Using algorithmic game theory to improve supervised machine learning: A novel applicability approach in flood susceptibility mapping. Nasiri Khiavi A; Vafakhah M Environ Sci Pollut Res Int; 2024 Aug; 31(40):52740-52757. PubMed ID: 39158659 [TBL] [Abstract][Full Text] [Related]
16. Enhancing flood mapping through ensemble machine learning in the Gamasyab watershed, Western Iran. Bashirgonbad M; Farokhzadeh B; Gholami V Environ Sci Pollut Res Int; 2024 Aug; 31(38):50427-50442. PubMed ID: 39090299 [TBL] [Abstract][Full Text] [Related]
17. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Razavi Termeh SV; Kornejady A; Pourghasemi HR; Keesstra S Sci Total Environ; 2018 Feb; 615():438-451. PubMed ID: 28988080 [TBL] [Abstract][Full Text] [Related]
18. A Novel Hybrid Swarm Optimized Multilayer Neural Network for Spatial Prediction of Flash Floods in Tropical Areas Using Sentinel-1 SAR Imagery and Geospatial Data. Ngo PT; Hoang ND; Pradhan B; Nguyen QK; Tran XT; Nguyen QM; Nguyen VN; Samui P; Tien Bui D Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30384451 [TBL] [Abstract][Full Text] [Related]
19. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Khosravi K; Pham BT; Chapi K; Shirzadi A; Shahabi H; Revhaug I; Prakash I; Tien Bui D Sci Total Environ; 2018 Jun; 627():744-755. PubMed ID: 29426199 [TBL] [Abstract][Full Text] [Related]
20. Flood susceptibility mapping of Cheongju, South Korea based on the integration of environmental factors using various machine learning approaches. Widya LK; Rezaie F; Lee W; Lee CW; Nurwatik N; Lee S J Environ Manage; 2024 Jul; 364():121291. PubMed ID: 38875975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]