These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 39072130)

  • 1. The Electrical and Photodetector Characteristics of the Graphene:PVA/p-Si Schottky Structures Depending on Illumination Intensities.
    Ulusoy M; Koçyiğit S; Tataroğlu A; Altındal Yerişkin S
    ACS Omega; 2024 Jul; 9(29):32243-32255. PubMed ID: 39072130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High detectivity graphene/si heterostructure photodetector with a single hydrogenated graphene atomic interlayer for passivation and carrier tunneling.
    Cong J; Khan A; Hang P; Cheng L; Yang D; Yu X
    Nanotechnology; 2022 Sep; 33(50):. PubMed ID: 36044876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beta Irradiation Effects on Electrical Characteristics of Graphene-Doped PVA/n-type Si Nanostructures.
    Abay Ö; Ulusoy M; Uyar E; Gökmen U; Bilge Ocak S
    ACS Omega; 2024 Jun; 9(22):23193-23201. PubMed ID: 38854522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical and Photodetector Characteristics of Schottky Structures Interlaid with P(EHA) and P(EHA-
    Demirezen S; Ulusoy M; Durmuş H; Cavusoglu H; Yılmaz K; Altındal Ş
    ACS Omega; 2023 Dec; 8(49):46499-46512. PubMed ID: 38107908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lanthanum(III)hydroxide Nanoparticles and Polyethyleneimine-Functionalized Graphene Quantum Dot Nanocomposites in Photosensitive Silicon Heterojunctions.
    Anter A; Orhan E; Ulusoy M; Polat B; Yıldız M; Kumar A; Di Bartolomeo A; Faella E; Passacantando M; Bi J
    ACS Appl Mater Interfaces; 2024 May; 16(17):22421-22432. PubMed ID: 38634639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene Quantum Dot-Sensitized ZnO Nanorod/Polymer Schottky Junction UV Detector with Superior External Quantum Efficiency, Detectivity, and Responsivity.
    Dhar S; Majumder T; Mondal SP
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31822-31831. PubMed ID: 27800675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Camphor-Based CVD Bilayer Graphene/Si Heterostructures for Self-Powered and Broadband Photodetection.
    Tsai DS; Chiang PY; Tsai ML; Tu WC; Chen C; Chen SL; Chiu CH; Li CY; Uen WY
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32867054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Silicon Sub-Bandgap Near-Infrared Photodetector with High Detectivity Based on Textured Si/Au Nanoparticle Schottky Junctions Covered with Graphene Film.
    Dai X; Wu L; Liu K; Ma F; Yang Y; Yu L; Sun J; Lu M
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acid-Treated PEDOT:PSS Polymer and TiO
    Dhar S; Chakraborty P; Majumder T; Mondal SP
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41618-41626. PubMed ID: 30406645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky junction.
    Vabbina P; Choudhary N; Chowdhury AA; Sinha R; Karabiyik M; Das S; Choi W; Pala N
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15206-13. PubMed ID: 26148017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning models for efficient characterization of Schottky barrier photodiode internal parameters.
    Ocaya RO; Akinyelu AA; Al-Sehemi AG; Dere A; Al-Ghamdi AA; Yakuphanoğlu F
    Sci Rep; 2023 Aug; 13(1):13990. PubMed ID: 37633987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. n-GaAs diode with photoresponsivity based on 3-aminorhodanine thin films.
    Soylu M
    Appl Opt; 2018 Aug; 57(23):6788-6794. PubMed ID: 30129628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and characterization of self-powered, highly sensitive optoelectronic device based on PVA-rGO nanofibers/n-Si.
    Yıldırım F; Galehdarvand S; Chenari HM; Yılmaz M; Aydoğan Ş
    Nanotechnology; 2024 May; 35(33):. PubMed ID: 38759632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zero-Power-Consumption Solar-Blind Photodetector Based on β-Ga
    Guo D; Liu H; Li P; Wu Z; Wang S; Cui C; Li C; Tang W
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1619-1628. PubMed ID: 28006095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-Silicon Device for Visible and Infrared Photodetection.
    Pelella A; Grillo A; Faella E; Luongo G; Askari MB; Di Bartolomeo A
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47895-47903. PubMed ID: 34581561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Detectivity Graphene-Silicon Heterojunction Photodetector.
    Li X; Zhu M; Du M; Lv Z; Zhang L; Li Y; Yang Y; Yang T; Li X; Wang K; Zhu H; Fang Y
    Small; 2016 Feb; 12(5):595-601. PubMed ID: 26643577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Powered Broadband Photodetector Based on NiO/Si Heterojunction Incorporating Graphene Transparent Conducting Layer.
    Pandit B; Parida B; Jang HS; Heo K
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Power Graphene/ZnO Schottky UV Photodiodes with Enhanced Lateral Schottky Barrier Homogeneity.
    Lee Y; Kim DY; Lee S
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31137675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transparent dual-band ultraviolet photodetector based on graphene/p-GaN/AlGaN heterojunction.
    Wu G; Tang L; Deng G; Liu L; Hao Q; Yuan S; Wang J; Wei H; Zhao Y; Yue B; Shi J; Tan Y; Li R; Zhang Y; Yan J; Yi X; Wang J; Kong J; Li J
    Opt Express; 2022 Jun; 30(12):21349-21361. PubMed ID: 36224856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P3HT-graphene bilayer electrode for Schottky junction photodetectors.
    Aydın H; Kalkan SB; Varlikli C; Çelebi C
    Nanotechnology; 2018 Apr; 29(14):145502. PubMed ID: 29447121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.