These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 39072492)

  • 1. Triple Junction Segregation Dominates the Stability of Nanocrystalline Alloys.
    Barnett AK; Hussein O; Alghalayini M; Hinojos A; Nathaniel JE; Medlin DL; Hattar K; Boyce BL; Abdeljawad F
    Nano Lett; 2024 Aug; 24(31):9627-9634. PubMed ID: 39072492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of grain boundary character in solute segregation and thermal stability of nanocrystalline Pt-Au.
    Barr CM; Foiles SM; Alkayyali M; Mahmood Y; Price PM; Adams DP; Boyce BL; Abdeljawad F; Hattar K
    Nanoscale; 2021 Feb; 13(6):3552-3563. PubMed ID: 33491721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomistic Assessment of Solute-Solute Interactions during Grain Boundary Segregation.
    Matson TP; Schuh CA
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling Thermodynamic and Kinetic Contributions to the Stability of Doped Nanocrystalline Alloys using Nanometallic Multilayers.
    Cunningham WS; Mascarenhas STJ; Riano JS; Wang W; Hwang S; Hattar K; Hodge AM; Trelewicz JR
    Adv Mater; 2022 Jul; 34(27):e2200354. PubMed ID: 35512110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New nanoscale toughening mechanisms mitigate embrittlement in binary nanocrystalline alloys.
    Heckman NM; Foiles SM; O'Brien CJ; Chandross M; Barr CM; Argibay N; Hattar K; Lu P; Adams DP; Boyce BL
    Nanoscale; 2018 Dec; 10(45):21231-21243. PubMed ID: 30417913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Development of Stable Nanocrystalline High-Entropy Alloy: Coupling Self-Stabilization and Solute Grain Boundary Segregation Effects.
    Adaan-Nyiak MA; Alam I; Jossou E; Hwang S; Kisslinger K; Gill SK; Tiamiyu AA
    Small; 2024 Jul; 20(27):e2309631. PubMed ID: 38312106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural stability and energetics of grain boundary triple junctions in face centered cubic materials.
    Adlakha I; Solanki KN
    Sci Rep; 2015 Mar; 5():8692. PubMed ID: 25732834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-analysis of grain boundary and triple junction transport in nanocrystalline Ni/Cu.
    Reda Chellali M; Balogh Z; Schmitz G
    Ultramicroscopy; 2013 Sep; 132():164-70. PubMed ID: 23294555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new approach to grain boundary engineering for nanocrystalline materials.
    Kobayashi S; Tsurekawa S; Watanabe T
    Beilstein J Nanotechnol; 2016; 7():1829-1849. PubMed ID: 28144533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grain Boundary Specific Segregation in Nanocrystalline Fe(Cr).
    Zhou X; Yu XX; Kaub T; Martens RL; Thompson GB
    Sci Rep; 2016 Oct; 6():34642. PubMed ID: 27708360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solute segregation and thermal stability of nanocrystalline solid solution systems.
    Tang F; Liu X; Wang H; Hou C; Lu H; Nie Z; Song X
    Nanoscale; 2019 Jan; 11(4):1813-1826. PubMed ID: 30631871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.
    Darling KA; Rajagopalan M; Komarasamy M; Bhatia MA; Hornbuckle BC; Mishra RS; Solanki KN
    Nature; 2016 Sep; 537(7620):378-81. PubMed ID: 27629642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Mo Segregation at Grain Boundaries on the High Temperature Creep Behavior of Ni-Mo Alloys: An Atomistic Study.
    Li Q; Zhang J; Tang H; Zhang H; Ye H; Zheng Y
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual Beam In Situ Radiation Studies of Nanocrystalline Cu.
    Fan C; Shang Z; Niu T; Li J; Wang H; Zhang X
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31450669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elemental distribution, solute solubility and defect free volume in nanocrystalline restricted-equilibrium Cu-Ag alloys.
    Riedl T; Kirchner A; Eymann K; Shariq A; Schlesiger R; Schmitz G; Ruhnow M; Kieback B
    J Phys Condens Matter; 2013 Mar; 25(11):115401. PubMed ID: 23407023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity of nanocrystalline alloys with chemical order: on the strength and ductility of nanocrystalline Ni-Fe.
    Schäfer J; Albe K
    Beilstein J Nanotechnol; 2013; 4():542-53. PubMed ID: 24205450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double strengthening induced by grain boundary segregation of solute elements in gradient nano Ni-Co alloys.
    Zhang W; Guo X; Ren J; Li J; Xue H; Tang F; La P; Lu X
    Phys Chem Chem Phys; 2023 Nov; 25(46):32142-32150. PubMed ID: 37986587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomically ordered solute segregation behaviour in an oxide grain boundary.
    Feng B; Yokoi T; Kumamoto A; Yoshiya M; Ikuhara Y; Shibata N
    Nat Commun; 2016 Mar; 7():11079. PubMed ID: 27004614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen.
    He MR; Samudrala SK; Kim G; Felfer PJ; Breen AJ; Cairney JM; Gianola DS
    Nat Commun; 2016 Apr; 7():11225. PubMed ID: 27071458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convection-Induced Compositional Patterning at Grain Boundaries in Irradiated Alloys.
    Bouobda Moladje GF; Averback RS; Bellon P; Thuinet L
    Phys Rev Lett; 2023 Aug; 131(5):056201. PubMed ID: 37595244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.