These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 39072823)
21. Photophysical diversity of two novel cyanobacteriochromes with phycocyanobilin chromophores: photochemistry and dark reversion kinetics. Chen Y; Zhang J; Luo J; Tu JM; Zeng XL; Xie J; Zhou M; Zhao JQ; Scheer H; Zhao KH FEBS J; 2012 Jan; 279(1):40-54. PubMed ID: 22008418 [TBL] [Abstract][Full Text] [Related]
22. Mechanistic insight into the photosensory versatility of DXCF cyanobacteriochromes. Rockwell NC; Martin SS; Lagarias JC Biochemistry; 2012 May; 51(17):3576-85. PubMed ID: 22494320 [TBL] [Abstract][Full Text] [Related]
23. Comprehensive analysis of the green-to-blue photoconversion of full-length Cyanobacteriochrome Tlr0924. Hardman SJ; Hauck AF; Clark IP; Heyes DJ; Scrutton NS Biophys J; 2014 Nov; 107(9):2195-203. PubMed ID: 25418104 [TBL] [Abstract][Full Text] [Related]
24. Conserved phenylalanine residues are required for blue-shifting of cyanobacteriochrome photoproducts. Rockwell NC; Martin SS; Gulevich AG; Lagarias JC Biochemistry; 2014 May; 53(19):3118-30. PubMed ID: 24766217 [TBL] [Abstract][Full Text] [Related]
25. The Expanded Red/Green Cyanobacteriochrome Lineage: An Evolutionary Hot Spot. Fushimi K; Ikeuchi M; Narikawa R Photochem Photobiol; 2017 May; 93(3):903-906. PubMed ID: 28500709 [TBL] [Abstract][Full Text] [Related]
26. Red, Orange, Green: Light- and Temperature-Dependent Color Tuning in a Cyanobacteriochrome. Buhrke D; Battocchio G; Wilkening S; Blain-Hartung M; Baumann T; Schmitt FJ; Friedrich T; Mroginski MA; Hildebrandt P Biochemistry; 2020 Feb; 59(4):509-519. PubMed ID: 31840994 [TBL] [Abstract][Full Text] [Related]
27. Cyanobacteriochromes from Gloeobacterales Provide New Insight into the Diversification of Cyanobacterial Photoreceptors. Rockwell NC; Lagarias JC J Mol Biol; 2024 Mar; 436(5):168313. PubMed ID: 37839679 [TBL] [Abstract][Full Text] [Related]
28. A far-red cyanobacteriochrome lineage specific for verdins. Moreno MV; Rockwell NC; Mora M; Fisher AJ; Lagarias JC Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27962-27970. PubMed ID: 33106421 [TBL] [Abstract][Full Text] [Related]
29. Cyanochromes are blue/green light photoreversible photoreceptors defined by a stable double cysteine linkage to a phycoviolobilin-type chromophore. Ulijasz AT; Cornilescu G; von Stetten D; Cornilescu C; Velazquez Escobar F; Zhang J; Stankey RJ; Rivera M; Hildebrandt P; Vierstra RD J Biol Chem; 2009 Oct; 284(43):29757-72. PubMed ID: 19671704 [TBL] [Abstract][Full Text] [Related]
30. Introduction of reversible cysteine ligation ability to the biliverdin-binding cyanobacteriochrome photoreceptor. Suzuki T; Yoshimura M; Hoshino H; Fushimi K; Arai M; Narikawa R FEBS J; 2023 Oct; 290(20):4999-5015. PubMed ID: 37488966 [TBL] [Abstract][Full Text] [Related]
31. Conservation and diversity in the primary forward photodynamics of red/green cyanobacteriochromes. Gottlieb SM; Kim PW; Chang CW; Hanke SJ; Hayer RJ; Rockwell NC; Martin SS; Lagarias JC; Larsen DS Biochemistry; 2015 Feb; 54(4):1028-42. PubMed ID: 25545467 [TBL] [Abstract][Full Text] [Related]
33. Characterization of Red/Green Cyanobacteriochrome NpR6012g4 by Solution Nuclear Magnetic Resonance Spectroscopy: A Hydrophobic Pocket for the C15-E,anti Chromophore in the Photoproduct. Rockwell NC; Martin SS; Lim S; Lagarias JC; Ames JB Biochemistry; 2015 Jun; 54(24):3772-83. PubMed ID: 25989712 [TBL] [Abstract][Full Text] [Related]
34. Hydrogen-Bond Network Determines the Early Photoisomerization Processes of Cph1 and AnPixJ Phytochromes. Liu XY; Zhang TS; Fang Q; Fang WH; González L; Cui G Angew Chem Int Ed Engl; 2021 Aug; 60(34):18688-18693. PubMed ID: 34097335 [TBL] [Abstract][Full Text] [Related]
35. Color Tuning in Red/Green Cyanobacteriochrome AnPixJ: Photoisomerization at C15 Causes an Excited-State Destabilization. Song C; Narikawa R; Ikeuchi M; Gärtner W; Matysik J J Phys Chem B; 2015 Jul; 119(30):9688-95. PubMed ID: 26115331 [TBL] [Abstract][Full Text] [Related]
36. Genomic Survey and Biochemical Analysis of Recombinant Candidate Cyanobacteriochromes Reveals Enrichment for Near UV/Violet Sensors in the Halotolerant and Alkaliphilic Cyanobacterium Microcoleus IPPAS B353. Cho SM; Jeoung SC; Song JY; Kupriyanova EV; Pronina NA; Lee BW; Jo SW; Park BS; Choi SB; Song JJ; Park YI J Biol Chem; 2015 Nov; 290(47):28502-28514. PubMed ID: 26405033 [TBL] [Abstract][Full Text] [Related]
37. 1H, 13C, and 15N chemical shift assignments of cyanobacteriochrome NpR6012g4 in the green-absorbing photoproduct state. Lim S; Yu Q; Rockwell NC; Martin SS; Lagarias JC; Ames JB Biomol NMR Assign; 2016 Apr; 10(1):157-61. PubMed ID: 26537963 [TBL] [Abstract][Full Text] [Related]
38. Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE. Nagae T; Unno M; Koizumi T; Miyanoiri Y; Fujisawa T; Masui K; Kamo T; Wada K; Eki T; Ito Y; Hirose Y; Mishima M Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33972439 [TBL] [Abstract][Full Text] [Related]
39. Chromophorylation of a Novel Cyanobacteriochrome GAF Domain from Jiang SD; Sheng Y; Wu XJ; Zhu YL; Li PP J Microbiol Biotechnol; 2021 Feb; 31(2):233-239. PubMed ID: 33203817 [TBL] [Abstract][Full Text] [Related]
40. Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism. Narikawa R; Ishizuka T; Muraki N; Shiba T; Kurisu G; Ikeuchi M Proc Natl Acad Sci U S A; 2013 Jan; 110(3):918-23. PubMed ID: 23256156 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]