These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 39073457)
1. Boosting High-Voltage Practical Lithium Metal Batteries with Tailored Additives. You J; Wang Q; Wei R; Deng L; Hu Y; Niu L; Wang J; Zheng X; Li J; Zhou Y; Li JT Nanomicro Lett; 2024 Jul; 16(1):257. PubMed ID: 39073457 [TBL] [Abstract][Full Text] [Related]
2. High-voltage lithium-metal batteries enabled by ethylene glycol bis(propionitrile) ether-LiNO Li S; Huang K; Wu L; Xiao D; Long J; Wang C; Dou H; Chen P; Zhang X Chem Sci; 2023 Oct; 14(39):10786-10794. PubMed ID: 37829038 [TBL] [Abstract][Full Text] [Related]
3. Stable Cycling of High-Voltage Lithium-Metal Batteries Enabled by High-Concentration FEC-Based Electrolyte. Wang W; Zhang J; Yang Q; Wang S; Wang W; Li B ACS Appl Mater Interfaces; 2020 May; 12(20):22901-22909. PubMed ID: 32348668 [TBL] [Abstract][Full Text] [Related]
4. Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High-Voltage Lithium Metal Batteries. Yan C; Yao YX; Chen X; Cheng XB; Zhang XQ; Huang JQ; Zhang Q Angew Chem Int Ed Engl; 2018 Oct; 57(43):14055-14059. PubMed ID: 30094909 [TBL] [Abstract][Full Text] [Related]
5. Upgrading Carbonate Electrolytes for Ultra-stable Practical Lithium Metal Batteries. Zhao Q; Utomo NW; Kocen AL; Jin S; Deng Y; Zhu VX; Moganty S; Coates GW; Archer LA Angew Chem Int Ed Engl; 2022 Feb; 61(9):e202116214. PubMed ID: 35014141 [TBL] [Abstract][Full Text] [Related]
6. A novel cathode interphase formation methodology by preferential adsorption of a borate-based electrolyte additive. Zhang D; Ma J; Zhang C; Liu M; Yang K; Li Y; Cheng X; Wang Z; Wang H; Lv W; He YB; Kang F Natl Sci Rev; 2024 Aug; 11(8):nwae219. PubMed ID: 39131924 [TBL] [Abstract][Full Text] [Related]
7. Regulating the Li Xiao D; Li Q; Luo D; Li G; Liu H; Shui L; Gourley S; Zhou G; Wang X; Chen Z Small; 2020 Nov; 16(47):e2004688. PubMed ID: 33136327 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of Bilayer Polymer-Based Electrolyte with Functional Molecules in Enhancing the Capacity and Cycling Stability of High-Voltage Lithium Batteries. Liu J; Liang K; Duan H; Chen G; Deng Y ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38048569 [TBL] [Abstract][Full Text] [Related]
9. Promoting a Stable Interface Using Localized High-Concentration Carbonate-Based Electrolyte for Li Metal Batteries. Le L; Liao M; Nguyen A; Wang D ACS Appl Mater Interfaces; 2023 Aug; 15(31):37497-37503. PubMed ID: 37497557 [TBL] [Abstract][Full Text] [Related]
10. A Sustainable Solid Electrolyte Interphase for High-Energy-Density Lithium Metal Batteries Under Practical Conditions. Zhang XQ; Li T; Li BQ; Zhang R; Shi P; Yan C; Huang JQ; Zhang Q Angew Chem Int Ed Engl; 2020 Feb; 59(8):3252-3257. PubMed ID: 31756011 [TBL] [Abstract][Full Text] [Related]
11. Hybrid Electrolyte with Dual-Anion-Aggregated Solvation Sheath for Stabilizing High-Voltage Lithium-Metal Batteries. Wang X; Wang S; Wang H; Tu W; Zhao Y; Li S; Liu Q; Wu J; Fu Y; Han C; Kang F; Li B Adv Mater; 2021 Dec; 33(52):e2007945. PubMed ID: 34676906 [TBL] [Abstract][Full Text] [Related]
12. Lithium Nitrate Regulated Sulfone Electrolytes for Lithium Metal Batteries. Fu J; Ji X; Chen J; Chen L; Fan X; Mu D; Wang C Angew Chem Int Ed Engl; 2020 Dec; 59(49):22194-22201. PubMed ID: 32841474 [TBL] [Abstract][Full Text] [Related]
13. An Interlayer Containing Dissociated LiNO Yang H; Liu Q; Wang Y; Ma Z; Tang P; Zhang X; Cheng HM; Sun Z; Li F Small; 2022 Jun; 18(25):e2202349. PubMed ID: 35616012 [TBL] [Abstract][Full Text] [Related]
14. In Situ Polymerized Quasi-Solid Electrolytes Compounded with Ionic Liquid Empowering Long-Life Cycling of 4.45 V Lithium-Metal Battery. Ma S; Zhang D; Tang Z; Li W; Zhang Y; Zhang Y; Ji K; Chen M ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38600661 [TBL] [Abstract][Full Text] [Related]
15. Tailoring the Electrode-Electrolyte Interface for Reliable Operation of All-Climate 4.8 V Li||NCM811 Batteries. Yang W; Zhang Z; Sun X; Liu Y; Sheng C; Chen A; He P; Zhou H Angew Chem Int Ed Engl; 2024 Oct; 63(44):e202410893. PubMed ID: 39105385 [TBL] [Abstract][Full Text] [Related]
16. Beyond the Polysulfide Shuttle and Lithium Dendrite Formation: Addressing the Sluggish Sulfur Redox Kinetics for Practical High-Energy Li-S Batteries. Zhao C; Xu GL; Zhao T; Amine K Angew Chem Int Ed Engl; 2020 Sep; 59(40):17634-17640. PubMed ID: 32645250 [TBL] [Abstract][Full Text] [Related]
17. Sustained-Release Nanocapsules Enable Long-Lasting Stabilization of Li Anode for Practical Li-Metal Batteries. Liu Q; Xu Y; Wang J; Zhao B; Li Z; Wu HB Nanomicro Lett; 2020 Aug; 12(1):176. PubMed ID: 34138174 [TBL] [Abstract][Full Text] [Related]
18. Enabling 420 Wh kg Zhang Y; Zhao P; Nie Q; Li Y; Guo R; Hong Y; Deng J; Song J Adv Mater; 2023 Apr; 35(15):e2211032. PubMed ID: 36642975 [TBL] [Abstract][Full Text] [Related]
19. Interfacial Manipulation via In Situ Constructed Fast Ion Transport Channels toward an Ultrahigh Rate and Practical Li Metal Anode. Xia S; Li F; Zhang X; Luo L; Zhang Y; Yuan T; Pang Y; Yang J; Liu W; Guo Z; Zheng S ACS Nano; 2023 Oct; 17(20):20689-20698. PubMed ID: 37796083 [TBL] [Abstract][Full Text] [Related]
20. Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries. Qi S; Wang H; He J; Liu J; Cui C; Wu M; Li F; Feng Y; Ma J Sci Bull (Beijing); 2021 Apr; 66(7):685-693. PubMed ID: 36654444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]