These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 39073757)
21. Ionization energies of metallocenes: a coupled cluster study of cobaltocene. Aðalsteinsson HM; Bjornsson R Phys Chem Chem Phys; 2023 Feb; 25(6):4570-4587. PubMed ID: 36723003 [TBL] [Abstract][Full Text] [Related]
22. Pair Natural Orbital Equation-of-Motion Coupled-Cluster Method for Core Binding Energies: Theory, Implementation, and Benchmark. Pant R; Ranga S; Bachhar A; Dutta AK J Chem Theory Comput; 2022 Aug; 18(8):4660-4673. PubMed ID: 35786933 [TBL] [Abstract][Full Text] [Related]
23. A Core-Valence Separated Similarity Transformed EOM-CCSD Method for Core-Excitation Spectra. Ranga S; Dutta AK J Chem Theory Comput; 2021 Dec; 17(12):7428-7446. PubMed ID: 34814683 [TBL] [Abstract][Full Text] [Related]
24. Oscillator Strengths in the Framework of Equation of Motion Multilevel CC3. Paul AC; Folkestad SD; Myhre RH; Koch H J Chem Theory Comput; 2022 Sep; 18(9):5246-5258. PubMed ID: 35921447 [TBL] [Abstract][Full Text] [Related]
25. Scalable Electron Correlation Methods. 5. Parallel Perturbative Triples Correction for Explicitly Correlated Local Coupled Cluster with Pair Natural Orbitals. Ma Q; Werner HJ J Chem Theory Comput; 2018 Jan; 14(1):198-215. PubMed ID: 29211961 [TBL] [Abstract][Full Text] [Related]
26. A low-cost four-component relativistic equation of motion coupled cluster method based on frozen natural spinors: Theory, implementation, and benchmark. Surjuse K; Chamoli S; Nayak MK; Dutta AK J Chem Phys; 2022 Nov; 157(20):204106. PubMed ID: 36456227 [TBL] [Abstract][Full Text] [Related]
27. MP2-Based Correction Scheme to Approach the Limit of a Complete Pair Natural Orbitals Space in DLPNO-CCSD(T) Calculations. Pogrebetsky J; Siklitskaya A; Kubas A J Chem Theory Comput; 2023 Jul; 19(13):4023-4032. PubMed ID: 37338422 [TBL] [Abstract][Full Text] [Related]
28. Toward a less costly but accurate calculation of the CCSD(T)/CBS noncovalent interaction energy. Chen JL; Sun T; Wang YB; Wang W J Comput Chem; 2020 May; 41(13):1252-1260. PubMed ID: 32045021 [TBL] [Abstract][Full Text] [Related]
29. Perturbative triples correction for local pair natural orbital based explicitly correlated CCSD(F12*) using Laplace transformation techniques. Schmitz G; Hättig C J Chem Phys; 2016 Dec; 145(23):234107. PubMed ID: 28010093 [TBL] [Abstract][Full Text] [Related]
30. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. Riplinger C; Sandhoefer B; Hansen A; Neese F J Chem Phys; 2013 Oct; 139(13):134101. PubMed ID: 24116546 [TBL] [Abstract][Full Text] [Related]
31. Second- and third-order triples and quadruples corrections to coupled-cluster singles and doubles in the ground and excited states. Shiozaki T; Hirao K; Hirata S J Chem Phys; 2007 Jun; 126(24):244106. PubMed ID: 17614536 [TBL] [Abstract][Full Text] [Related]
32. A scaled CIS(D) based method for the calculation of valence and core electron ionization energies. Hanson-Heine MWD; George MW; Besley NA J Chem Phys; 2019 Jul; 151(3):034104. PubMed ID: 31325914 [TBL] [Abstract][Full Text] [Related]
33. Inclusion of orbital relaxation and correlation through the unitary group adapted open shell coupled cluster theory using non-relativistic and scalar relativistic Hamiltonians to study the core ionization potential of molecules containing light to medium-heavy elements. Sen S; Shee A; Mukherjee D J Chem Phys; 2018 Feb; 148(5):054107. PubMed ID: 29421893 [TBL] [Abstract][Full Text] [Related]
34. Quantifying and reducing spin contamination in algebraic diagrammatic construction theory of charged excitations. Stahl TL; Banerjee S; Sokolov AY J Chem Phys; 2022 Jul; 157(4):044106. PubMed ID: 35922343 [TBL] [Abstract][Full Text] [Related]
35. A new scheme for perturbative triples correction to (0,1) sector of Fock space multi-reference coupled cluster method: theory, implementation, and examples. Dutta AK; Vaval N; Pal S J Chem Phys; 2015 Jan; 142(4):044113. PubMed ID: 25637975 [TBL] [Abstract][Full Text] [Related]
36. Sparse maps--A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. Riplinger C; Pinski P; Becker U; Valeev EF; Neese F J Chem Phys; 2016 Jan; 144(2):024109. PubMed ID: 26772556 [TBL] [Abstract][Full Text] [Related]
37. Higher-order equation-of-motion coupled-cluster methods for ionization processes. Kamiya M; Hirata S J Chem Phys; 2006 Aug; 125(7):074111. PubMed ID: 16942326 [TBL] [Abstract][Full Text] [Related]
38. Accurate Core-Excited States via Inclusion of Core Triple Excitations in Similarity-Transformed Equation-of-Motion Theory. Simons M; Matthews DA J Chem Theory Comput; 2022 Jun; 18(6):3759-3765. PubMed ID: 35536592 [TBL] [Abstract][Full Text] [Related]
39. New and Efficient Equation-of-Motion Coupled-Cluster Framework for Core-Excited and Core-Ionized States. Vidal ML; Feng X; Epifanovsky E; Krylov AI; Coriani S J Chem Theory Comput; 2019 May; 15(5):3117-3133. PubMed ID: 30964297 [TBL] [Abstract][Full Text] [Related]
40. Optimization of the Linear-Scaling Local Natural Orbital CCSD(T) Method: Improved Algorithm and Benchmark Applications. Nagy PR; Samu G; Kállay M J Chem Theory Comput; 2018 Aug; 14(8):4193-4215. PubMed ID: 29965753 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]