These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 39073775)

  • 1. An interpretable Bayesian clustering approach with feature selection for analyzing spatially resolved transcriptomics data.
    Li H; Zhu B; Jiang X; Guo L; Xie Y; Xu L; Li Q
    Biometrics; 2024 Jul; 80(3):. PubMed ID: 39073775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian Hidden Mark Interaction Model for Detecting Spatially Variable Genes in Imaging-Based Spatially Resolved Transcriptomics Data.
    Yang J; Jiang X; Jin KW; Shin S; Li Q
    bioRxiv; 2023 Dec; ():. PubMed ID: 38168368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian hidden mark interaction model for detecting spatially variable genes in imaging-based spatially resolved transcriptomics data.
    Yang J; Jiang X; Jin KW; Shin S; Li Q
    Front Genet; 2024; 15():1356709. PubMed ID: 38725485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hidden Markov random field models for cell-type assignment of spatially resolved transcriptomics.
    Zhong C; Tian T; Wei Z
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37944045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iIMPACT: integrating image and molecular profiles for spatial transcriptomics analysis.
    Jiang X; Wang S; Guo L; Zhu B; Wen Z; Jia L; Xu L; Xiao G; Li Q
    Genome Biol; 2024 Jun; 25(1):147. PubMed ID: 38844966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian modeling of spatial molecular profiling data via Gaussian process.
    Li Q; Zhang M; Xie Y; Xiao G
    Bioinformatics; 2021 Nov; 37(22):4129-4136. PubMed ID: 34146105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bayesian modified Ising model for identifying spatially variable genes from spatial transcriptomics data.
    Jiang X; Xiao G; Li Q
    Stat Med; 2022 Oct; 41(23):4647-4665. PubMed ID: 35871762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint Bayesian estimation of cell dependence and gene associations in spatially resolved transcriptomic data.
    Chakrabarti A; Ni Y; Mallick BK
    Sci Rep; 2024 Apr; 14(1):9516. PubMed ID: 38664448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bayesian multivariate mixture model for high throughput spatial transcriptomics.
    Allen C; Chang Y; Neelon B; Chang W; Kim HJ; Li Z; Ma Q; Chung D
    Biometrics; 2023 Sep; 79(3):1775-1787. PubMed ID: 35895854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SC-MEB: spatial clustering with hidden Markov random field using empirical Bayes.
    Yang Y; Shi X; Liu W; Zhou Q; Chan Lau M; Chun Tatt Lim J; Sun L; Ng CCY; Yeong J; Liu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34849574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SRTsim: spatial pattern preserving simulations for spatially resolved transcriptomics.
    Zhu J; Shang L; Zhou X
    Genome Biol; 2023 Mar; 24(1):39. PubMed ID: 36869394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-modal domain adaptation for revealing spatial functional landscape from spatially resolved transcriptomics.
    Wang L; Hu Y; Xiao K; Zhang C; Shi Q; Chen L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38819253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian approach for analyzing zero-inflated clustered count data with dispersion.
    Choo-Wosoba H; Gaskins J; Levy S; Datta S
    Stat Med; 2018 Feb; 37(5):801-812. PubMed ID: 29108124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking cell-type clustering methods for spatially resolved transcriptomics data.
    Cheng A; Hu G; Li WV
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36410733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarking spatial clustering methods with spatially resolved transcriptomics data.
    Yuan Z; Zhao F; Lin S; Zhao Y; Yao J; Cui Y; Zhang XY; Zhao Y
    Nat Methods; 2024 Apr; 21(4):712-722. PubMed ID: 38491270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixture models with multiple levels, with application to the analysis of multifactor gene expression data.
    Jörnsten R; Keleş S
    Biostatistics; 2008 Jul; 9(3):540-54. PubMed ID: 18256042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstructing Spatial Transcriptomics at the Single-cell Resolution with BayesDeep.
    Jiang X; Dong L; Wang S; Wen Z; Chen M; Xu L; Xiao G; Li Q
    bioRxiv; 2023 Dec; ():. PubMed ID: 38106214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring Cell-Cell Communications from Spatially Resolved Transcriptomics Data Using a Bayesian Tweedie Model.
    Wu D; Gaskins JT; Sekula M; Datta S
    Genes (Basel); 2023 Jun; 14(7):. PubMed ID: 37510272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sparse negative binomial mixture model for clustering RNA-seq count data.
    Li Y; Rahman T; Ma T; Tang L; Tseng GC
    Biostatistics; 2022 Dec; 24(1):68-84. PubMed ID: 34363675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.