These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 39073979)

  • 41. Experimental Verification of the Very Strong Coupling Regime in a GaAs Quantum Well Microcavity.
    Brodbeck S; De Liberato S; Amthor M; Klaas M; Kamp M; Worschech L; Schneider C; Höfling S
    Phys Rev Lett; 2017 Jul; 119(2):027401. PubMed ID: 28753330
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Disordered ensembles of strongly coupled single-molecule plasmonic picocavities as nonlinear optical metamaterials.
    Herrera F; Litinskaya M
    J Chem Phys; 2022 Mar; 156(11):114702. PubMed ID: 35317564
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ligands Slow Down Pure-Dephasing in Semiconductor Quantum Dots.
    Liu J; Kilina SV; Tretiak S; Prezhdo OV
    ACS Nano; 2015 Sep; 9(9):9106-16. PubMed ID: 26284384
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Supertransport of excitons in atomically thin organic semiconductors at the 2D quantum limit.
    Sharma A; Zhang L; Tollerud JO; Dong M; Zhu Y; Halbich R; Vogl T; Liang K; Nguyen HT; Wang F; Sanwlani S; Earl SK; Macdonald D; Lam PK; Davis JA; Lu Y
    Light Sci Appl; 2020; 9():116. PubMed ID: 32655861
    [TBL] [Abstract][Full Text] [Related]  

  • 45. All-Optical Tuning of Indistinguishable Single Photons Generated in Three-Level Quantum Systems.
    Dusanowski Ł; Gustin C; Hughes S; Schneider C; Höfling S
    Nano Lett; 2022 May; 22(9):3562-3568. PubMed ID: 35486678
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Distinction of electromagnetically induced transparency and Autler-Towners splitting in a Rydberg-involved ladder-type cold atom system.
    Ji Z; Jiao Y; Xue Y; Hao L; Zhao J; Jia S
    Opt Express; 2021 Apr; 29(8):11406-11415. PubMed ID: 33984920
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Superradiance and Exciton Delocalization in Perovskite Quantum Dot Superlattices.
    Blach DD; Lumsargis VA; Clark DE; Chuang C; Wang K; Dou L; Schaller RD; Cao J; Li CW; Huang L
    Nano Lett; 2022 Oct; 22(19):7811-7818. PubMed ID: 36130299
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tunable phononic coupling in excitonic quantum emitters.
    Ripin A; Peng R; Zhang X; Chakravarthi S; He M; Xu X; Fu KM; Cao T; Li M
    Nat Nanotechnol; 2023 Sep; 18(9):1020-1026. PubMed ID: 37264087
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Separating homogeneous and inhomogeneous line widths of heavy- and light-hole excitons in weakly disordered semiconductor quantum wells.
    Bristow AD; Zhang T; Siemens ME; Cundiff ST; Mirin RP
    J Phys Chem B; 2011 May; 115(18):5365-71. PubMed ID: 21384940
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interspecies exciton interactions lead to enhanced nonlinearity of dipolar excitons and polaritons in MoS
    Louca C; Genco A; Chiavazzo S; Lyons TP; Randerson S; Trovatello C; Claronino P; Jayaprakash R; Hu X; Howarth J; Watanabe K; Taniguchi T; Dal Conte S; Gorbachev R; Lidzey DG; Cerullo G; Kyriienko O; Tartakovskii AI
    Nat Commun; 2023 Jun; 14(1):3818. PubMed ID: 37369664
    [TBL] [Abstract][Full Text] [Related]  

  • 51. All-optical control of exciton flow in a colloidal quantum well complex.
    Yu J; Sharma M; Sharma A; Delikanli S; Volkan Demir H; Dang C
    Light Sci Appl; 2020; 9():27. PubMed ID: 32140218
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Suppression of exciton dephasing in sidewall-functionalized carbon nanotubes embedded into metallo-dielectric antennas.
    Shayan K; He X; Luo Y; Rabut C; Li X; Hartmann NF; Blackburn JL; Doorn SK; Htoon H; Strauf S
    Nanoscale; 2018 Jul; 10(26):12631-12638. PubMed ID: 29943788
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pure optical dephasing dynamics in semiconducting single-walled carbon nanotubes.
    Graham MW; Ma YZ; Green AA; Hersam MC; Fleming GR
    J Chem Phys; 2011 Jan; 134(3):034504. PubMed ID: 21261365
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exciton dynamics in semiconductor nanocrystals.
    Wheeler DA; Zhang JZ
    Adv Mater; 2013 Jun; 25(21):2878-96. PubMed ID: 23625792
    [TBL] [Abstract][Full Text] [Related]  

  • 55. THz mobility and polarizability: impact of transformation and dephasing on the spectral response of excitons in a 2D semiconductor.
    Quick MT; Ayari S; Owschimikow N; Jaziri S; Achtstein AW
    Phys Chem Chem Phys; 2023 Jan; 25(4):3354-3360. PubMed ID: 36633188
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In-Plane Electric-Field-Induced Orbital Hybridization of Excitonic States in Monolayer WSe_{2}.
    Zhu B; Xiao K; Yang S; Watanabe K; Taniguchi T; Cui X
    Phys Rev Lett; 2023 Jul; 131(3):036901. PubMed ID: 37540882
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultrafast imaging of terahertz electric waveforms using quantum dots.
    Heindl MB; Kirkwood N; Lauster T; Lang JA; Retsch M; Mulvaney P; Herink G
    Light Sci Appl; 2022 Jan; 11(1):5. PubMed ID: 34974517
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synergetic Enhancement of Light-Matter Interaction by Nonlocality and Band Degeneracy in ZnO Thin Films.
    Kinoshita T; Matsuda T; Takahashi T; Ichimiya M; Ashida M; Furukawa Y; Nakayama M; Ishihara H
    Phys Rev Lett; 2019 Apr; 122(15):157401. PubMed ID: 31050541
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Strongly Quantum-Confined Blue-Emitting Excitons in Chemically Configurable Multiquantum Wells.
    Yao K; Collins MS; Nell KM; Barnard ES; Borys NJ; Kuykendall T; Hohman JN; Schuck PJ
    ACS Nano; 2021 Mar; 15(3):4085-4092. PubMed ID: 33166467
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dephasing and dissipation in a source-drain model of light-harvesting systems.
    Xiong SJ; Chen L; Zhao Y
    Chemphyschem; 2014 Sep; 15(13):2859-70. PubMed ID: 25044624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.