These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 3907405)
1. A versatile Ca2+ ion-sensitive minielectrode with a microincubation chamber. Lenzen S; Panten U Anal Biochem; 1985 Sep; 149(2):301-8. PubMed ID: 3907405 [TBL] [Abstract][Full Text] [Related]
2. H+-dependent calcium uptake into an IP3-sensitive calcium pool from rat parotid gland. Thévenod F; Schulz I Am J Physiol; 1988 Oct; 255(4 Pt 1):G429-40. PubMed ID: 3263053 [TBL] [Abstract][Full Text] [Related]
3. Regulation of free Ca2+ by subcellular fractions of rat incisor odontoblasts. Lundgren T; Linde A Arch Oral Biol; 1987; 32(7):463-8. PubMed ID: 3479085 [TBL] [Abstract][Full Text] [Related]
4. Characterisation of Ca2+ transport activity by white adipose tissue mitochondria. Epping RJ; Taylor WM; Bygrave FL FEBS Lett; 1983 Jul; 158(1):21-6. PubMed ID: 6190683 [TBL] [Abstract][Full Text] [Related]
6. The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Crompton M; Moser R; Lüdi H; Carafoli E Eur J Biochem; 1978 Jan; 82(1):25-31. PubMed ID: 23291 [TBL] [Abstract][Full Text] [Related]
7. Uptake of calcium by pancreatic islet cell microsomes: inhibition by a monoclonal antibody to heart sarcoplasmic reticulum. Keenoy MY; Levitsky DO; Sener A; Malaisse WJ Diabetes Res; 1990 Jul; 14(3):139-47. PubMed ID: 2151881 [TBL] [Abstract][Full Text] [Related]
8. A plug-in minielectrode for measurements in stirred photometric cuvettes. Rustenbeck I; Lenzen S J Biochem Biophys Methods; 1996 Feb; 31(3-4):105-12. PubMed ID: 8675953 [TBL] [Abstract][Full Text] [Related]
13. Properties of a new calcium ion antagonist on cellular uptake and mitochondrial efflux of calcium ions. Deana R; Panato L; Cancellotti FM; Quadro G; Galzigna L Biochem J; 1984 Mar; 218(3):899-905. PubMed ID: 6721841 [TBL] [Abstract][Full Text] [Related]
14. The influence of starvation on some characteristics of the Ca2+ transport system and lipid content in rat liver mitochondria. Radeva-Domuschieva D; Maglova LM; Balevska PS; Holmuhamedov EL; Evtodienko YV Acta Physiol Pharmacol Bulg; 1986; 12(2):49-54. PubMed ID: 3766164 [TBL] [Abstract][Full Text] [Related]
15. Influence of ruthenium red on rat heart subcellular calcium transport. Gupta MP; Dixon IM; Zhao D; Dhalla NS Can J Cardiol; 1989; 5(1):55-63. PubMed ID: 2465813 [TBL] [Abstract][Full Text] [Related]
16. Ruthenium red-insensitive calcium transport in ascites-sarcoma 180/TG cells. Bygrave FL; Anderson TA Biochem J; 1981 Nov; 200(2):343-8. PubMed ID: 6176224 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of ruthenium red-induced Ca2+ efflux from liver mitochondria by the antibiotic X-537A. Pereira da Silva L; Bernardes CF; Vercesi AE Biochem Biophys Res Commun; 1984 Oct; 124(1):80-6. PubMed ID: 6208904 [TBL] [Abstract][Full Text] [Related]
18. Effects of extracellular ATP on ion transport systems and [Ca2+]i in rat parotid acinar cells. Comparison with the muscarinic agonist carbachol. Soltoff SP; McMillian MK; Cragoe EJ; Cantley LC; Talamo BR J Gen Physiol; 1990 Feb; 95(2):319-46. PubMed ID: 1689766 [TBL] [Abstract][Full Text] [Related]
19. Regulation of Ca2+ efflux in rat liver mitochondria. Role of membrane potential. Bernardi P; Azzone GF Eur J Biochem; 1983 Aug; 134(2):377-83. PubMed ID: 6191982 [TBL] [Abstract][Full Text] [Related]
20. Glucagon stimulation of ruthenium red-insensitive calcium ion transport in developing rat liver. Reinhart PH; Bygrave FL Biochem J; 1981 Feb; 194(2):541-9. PubMed ID: 6171260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]