These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Antisolvent Additive Engineering for Boosting Performance and Stability of Graded Heterojunction Perovskite Solar Cells Using Amide-Functionalized Graphene Quantum Dots. Khorshidi E; Rezaei B; Kavousighahfarokhi A; Hanisch J; Reus MA; Müller-Buschbaum P; Ameri T ACS Appl Mater Interfaces; 2022 Dec; 14(49):54623-54634. PubMed ID: 36446022 [TBL] [Abstract][Full Text] [Related]
3. Azadipyrromethene Dye-Assisted Defect Passivation for Efficient and Stable Perovskite Solar Cells. Feng Z; Wu Z; Hua Y; Weng C; Chen X; Huang S ACS Appl Mater Interfaces; 2022 Mar; 14(12):14388-14399. PubMed ID: 35296134 [TBL] [Abstract][Full Text] [Related]
4. Bi(trifluoromethyl) Benzoic Acid-Assisted Shallow Defect Passivation for Perovskite Solar Cells with an Efficiency Exceeding 21. Ding X; Wang H; Miao Y; Chen C; Zhai M; Yang C; Wang B; Tian Y; Cheng M ACS Appl Mater Interfaces; 2022 Jan; 14(3):3930-3938. PubMed ID: 35020343 [TBL] [Abstract][Full Text] [Related]
5. Highly stable hole-conductor-free perovskite solar cells based upon ammonium chloride and a carbon electrode. Zong B; Fu W; Guo ZA; Wang S; Huang L; Zhang B; Bala H; Cao J; Wang X; Sun G; Zhang Z J Colloid Interface Sci; 2019 Mar; 540():315-321. PubMed ID: 30660084 [TBL] [Abstract][Full Text] [Related]
6. Perovskite interface defect passivation with poly(ethylene oxide) for improving power conversion efficiency of the inverted solar cells. Duan C; Zhang X; Du Z; Chen J; El-Bashar R; Obayya SSA; Hameed M; Dai J Opt Express; 2023 Jun; 31(12):20364-20376. PubMed ID: 37381432 [TBL] [Abstract][Full Text] [Related]
7. Synergistic Effect of Defect Passivation and Crystallization Control Enabled by Bifunctional Additives for Carbon-Based Mesoscopic Perovskite Solar Cells. Wang D; Zhang Z; Liu J; Zhang Y; Chen K; She B; Liu B; Huang Y; Xiong J; Zhang J ACS Appl Mater Interfaces; 2021 Sep; 13(38):45435-45445. PubMed ID: 34542284 [TBL] [Abstract][Full Text] [Related]
9. Understanding the Mechanism between Antisolvent Dripping and Additive Doping Strategies on the Passivation Effects in Perovskite Solar Cells. Long J; Sheng W; Dai R; Huang Z; Yang J; Zhang J; Li X; Tan L; Chen Y ACS Appl Mater Interfaces; 2020 Dec; 12(50):56151-56160. PubMed ID: 33263982 [TBL] [Abstract][Full Text] [Related]
10. Sodium Dodecylbenzene Sulfonate Interface Modification of Methylammonium Lead Iodide for Surface Passivation of Perovskite Solar Cells. Zou Y; Guo R; Buyruk A; Chen W; Xiao T; Yin S; Jiang X; Kreuzer LP; Mu C; Ameri T; Schwartzkopf M; Roth SV; Müller-Buschbaum P ACS Appl Mater Interfaces; 2020 Nov; 12(47):52643-52651. PubMed ID: 33190484 [TBL] [Abstract][Full Text] [Related]
11. Chemical passivation of the under coordinated Pb Abdel-Shakour M; Chowdhury TH; Matsuishi K; Moritomo Y; Islam A Photochem Photobiol Sci; 2021 Mar; 20(3):357-367. PubMed ID: 33721271 [TBL] [Abstract][Full Text] [Related]
12. p-Type Carbon Dots for Effective Surface Optimization for Near-Record-Efficiency CsPbI Guo X; Zhao B; Xu K; Yang S; Liu Z; Han Y; Xu J; Xu D; Tan Z; Liu SF Small; 2021 Sep; 17(37):e2102272. PubMed ID: 34342143 [TBL] [Abstract][Full Text] [Related]
13. Multifunctional Molecule Assists Passivate Method to Simultaneously Improve the Efficiency and Stability of Perovskite Solar Cells. Meng X; Shen B; Sun Q; Deng J; Hu D; Kang B; Silva SRP; Wang X; Wang L ChemSusChem; 2023 Apr; 16(7):e202202092. PubMed ID: 36629755 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of Erbium-Doped Upconversion Nanoparticles and Carbon Quantum Dots for Efficient Perovskite Solar Cells. Alotaibi A; Alsardi F; Alshwikhat F; Aldossary M; Almarwani FS; Talidi FJ; Almenhali SA; Almotawa SF; Alzahrani YA; Alenzi S; Alanazi A; Alkahtani M Molecules; 2024 May; 29(11):. PubMed ID: 38893433 [TBL] [Abstract][Full Text] [Related]
15. Durable Defect Passivation of the Grain Surface in Perovskite Solar Cells with π-Conjugated Sulfamic Acid Additives. Cao K; Huang Y; Ge M; Huang F; Shi W; Wu Y; Cheng Y; Qian J; Liu L; Chen S ACS Appl Mater Interfaces; 2021 Jun; 13(22):26013-26022. PubMed ID: 34048215 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Performance and Photostability of Perovskite Solar Cells by Introduction of Fluorescent Carbon Dots. Jin J; Chen C; Li H; Cheng Y; Xu L; Dong B; Song H; Dai Q ACS Appl Mater Interfaces; 2017 Apr; 9(16):14518-14524. PubMed ID: 28387496 [TBL] [Abstract][Full Text] [Related]
17. Interface Passivation of a Pyridine-Based Bifunctional Molecule for Inverted Perovskite Solar Cells. Ye SQ; Yin ZC; Lin HS; Wang WF; Li M; Liu Y; Lei YX; Liu WR; Yang S; Wang GW ACS Appl Mater Interfaces; 2024 Jun; 16(23):30534-30544. PubMed ID: 38818656 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots. Ma Y; Zhang H; Zhang Y; Hu R; Jiang M; Zhang R; Lv H; Tian J; Chu L; Zhang J; Xue Q; Yip HL; Xia R; Li X; Huang W ACS Appl Mater Interfaces; 2019 Jan; 11(3):3044-3052. PubMed ID: 30585492 [TBL] [Abstract][Full Text] [Related]
19. Thermally Stable MAPbI Wu Y; Xie F; Chen H; Yang X; Su H; Cai M; Zhou Z; Noda T; Han L Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28524262 [TBL] [Abstract][Full Text] [Related]
20. Efficient Methylamine-Containing Antisolvent Strategy to Fabricate High-Efficiency and Stable FA Huang Y; Wu S; Chen R; Fang S; Zhang S; Wang G; Chen W ACS Appl Mater Interfaces; 2019 May; 11(20):18415-18422. PubMed ID: 31050284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]