These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 39074498)

  • 1. First-principles study of non-linear thermal expansion in cadmium titanate by molecular dynamics incorporating nuclear quantum effects.
    Kanayama K; Toyoura K
    J Phys Condens Matter; 2024 Aug; 36(44):. PubMed ID: 39074498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Thermal Bath for Path Integral Molecular Dynamics Simulation.
    Brieuc F; Dammak H; Hayoun M
    J Chem Theory Comput; 2016 Mar; 12(3):1351-9. PubMed ID: 26799437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of nuclear quantum effects on liquid water via artificial neural network model based on SCAN meta-GGA functional.
    Yao Y; Kanai Y
    J Chem Phys; 2020 Jul; 153(4):044114. PubMed ID: 32752675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotope effects in lithium hydride and lithium deuteride crystals by molecular dynamics simulations.
    Dammak H; Antoshchenkova E; Hayoun M; Finocchi F
    J Phys Condens Matter; 2012 Oct; 24(43):435402. PubMed ID: 23034812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Fluctuation-Dissipation Theorem as a Diagnosis and Cure for Zero-Point Energy Leakage in Quantum Thermal Bath Simulations.
    Mangaud E; Huppert S; Plé T; Depondt P; Bonella S; Finocchi F
    J Chem Theory Comput; 2019 May; 15(5):2863-2880. PubMed ID: 30939002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the importance of anharmonicities and nuclear quantum effects in modelling the structural properties and thermal expansion of MOF-5.
    Lamaire A; Wieme J; Rogge SMJ; Waroquier M; Van Speybroeck V
    J Chem Phys; 2019 Mar; 150(9):094503. PubMed ID: 30849909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Use of Quantum Thermal Bath in Unimolecular Fragmentation Simulation.
    Spezia R; Dammak H
    J Phys Chem A; 2019 Oct; 123(40):8542-8551. PubMed ID: 31509415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capturing the nuclear quantum effects in molecular dynamics for lattice thermal conductivity calculations: Using ice as example.
    Luo R; Yu K
    J Chem Phys; 2020 Nov; 153(19):194105. PubMed ID: 33218245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum
    Angiolari F; Huppert S; Spezia R
    Phys Chem Chem Phys; 2022 Dec; 24(48):29357-29370. PubMed ID: 36448557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidating Heavy-Atom-Tunneling Kinetics in the Cope Rearrangement of Semibullvalene.
    Angiolari F; Mandelli G; Huppert S; Aieta C; Spezia R
    Chemistry; 2024 Oct; 30(60):e202401000. PubMed ID: 38924666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zero-Point Energy Leakage in Quantum Thermal Bath Molecular Dynamics Simulations.
    Brieuc F; Bronstein Y; Dammak H; Depondt P; Finocchi F; Hayoun M
    J Chem Theory Comput; 2016 Dec; 12(12):5688-5697. PubMed ID: 27766830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear Quantum Effects in Liquid Water at Near Classical Computational Cost Using the Adaptive Quantum Thermal Bath.
    Mauger N; Plé T; Lagardère L; Bonella S; Mangaud É; Piquemal JP; Huppert S
    J Phys Chem Lett; 2021 Sep; 12(34):8285-8291. PubMed ID: 34427440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in First-Principles Based Molecular Dynamics.
    Mouvet F; Villard J; Bolnykh V; Rothlisberger U
    Acc Chem Res; 2022 Feb; 55(3):221-230. PubMed ID: 35026115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-dependent UV-Vis dielectric functions of BaTiO
    Zhang S; Fei T; Cheng T; Yang JY; Liu L
    Opt Express; 2023 Apr; 31(8):12357-12366. PubMed ID: 37157397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear Quantum Effects Prolong Charge Carrier Lifetimes in Hybrid Organic-Inorganic Perovskites.
    Liu Y; Long R; Fang WH; Prezhdo OV
    J Am Chem Soc; 2023 Jun; 145(25):14112-14123. PubMed ID: 37334567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Routine Molecular Dynamics Simulations Including Nuclear Quantum Effects: From Force Fields to Machine Learning Potentials.
    Plé T; Mauger N; Adjoua O; Inizan TJ; Lagardère L; Huppert S; Piquemal JP
    J Chem Theory Comput; 2023 Mar; 19(5):1432-1445. PubMed ID: 36856658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase transitions and thermal-stress-induced structural changes in a ferroelectric Pb(Zr0.80Ti0.20)O3 single crystal.
    Frantti J; Fujioka Y; Puretzky A; Xie Y; Ye ZG; Parish C; Glazer AM
    J Phys Condens Matter; 2015 Jan; 27(2):025901. PubMed ID: 25531118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antiferroelectricity-Induced Negative Thermal Expansion in Double Perovskite Pb
    Zhao H; Pan Z; Shen X; Zhao J; Lu D; Zhang J; Hu Z; Kuo CY; Chen CT; Chan TS; Sahle CJ; Dong C; Nishikubo T; Koike T; Deng ZY; Hong J; Yu R; Yu P; Azuma M; Jin C; Long Y
    Small; 2024 Jan; 20(2):e2305219. PubMed ID: 37658514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum critical phenomena in a compressible displacive ferroelectric.
    Coak MJ; Haines CRS; Liu C; Rowley SE; Lonzarich GG; Saxena SS
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12707-12712. PubMed ID: 32457161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Condensed-Phase Water Dynamics with Explicit Nuclear Quantum Effects: The Polarizable Q-AMOEBA Force Field.
    Mauger N; Plé T; Lagardère L; Huppert S; Piquemal JP
    J Phys Chem B; 2022 Nov; 126(43):8813-8826. PubMed ID: 36270033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.